Shared CROMERR Services – Second Factor Authentication Services API Documentation

02-20-2014

[image: image1.jpg]Sead
- <xsd

|
angenelwor%_ e,

I XML 3.0 Point dataxsd:documer

Available:htt,
cumentation>

PR

espace="http:/
"httpi/ /www.)
="EN_NEI http: ffwww.

i Def

mat</xsd:documentation>
t 1>Application: Varies by
1entation
) steloped By:

“UTE-8" e
Wil x

/\A}wv»/.\,v3.org/20. /XMLSche I

epa.gov/ angenetwork"”
ied" attributeFormDefault

pa.gov/e ang

tation>
Current Ver:
! /www.ej ov/

>Description: The NEI
ol
l:documentat 4
Application: Varies by
 tation> -

Environmental Information

e)@nhange

etwork





Revision History
	Version Number
	Description of Change
	Change Effective Date
	Change Entered By

	0.1
	Initial draft 
	03/15/2013
	EPA

	0.2
	Additional details for service options
	02/20/2014
	EPA


Table of Contents

2Revision History

Table of Contents
3
1
About this Guide
4
1.1
Audience
4
1.2
Purpose
4
1.3
Scope
4
2
Using Second Factor Authentication Services
5
2.1
Trading Partner Manages User Credentials
5
2.2
Shared CROMERR Services Manages User Credentials
6
3
CROMERR Shared Services Data Types
8
3.1
UserType
8
3.2
PropertyType
8
3.3
PropertiesType
8
3.4
EventTypeType
9
3.5
EventStatusType
9
3.6
QuestionType
10
3.7
AnswerType
10
3.8
SharedCromerrFault
10
3.9
SharedCromerrErrorCode
11
3.10
EventGroupType
13
3.11
EventType
13
4
CROMERR Shared Signature and Validate COR Service Calls
14
4.1
Authenticate
14
4.2
Create Activity
15
4.3
AuditEvent
17
4.4
AuthenticateUser
18
4.5
GetQuestion
19
4.6
AnswerQuestion
21


1 About this Guide
1.1 Audience

This guide is written for application developers who want to use EPA’s Shared CROMERR Second Factor Authentication Services within their application to support regulatory reporting requirements. The second factor authentication services allow a user to re-authenticate and answer a knowledge-based question during the signature process.
Using these services requires working knowledge of CROMERR requirements. To support any working knowledge, the following materials can be referenced:

· EPA’s CROMERR Overview for direct reporters

· EPA’s CROMERR Overview for states, tribes and local governments.

· EPA’s Shared CROMERR Guidance and Recommendations Document v1.1

1.2 Purpose

This guide describes the operations trading partners should use when the user identity and credentials are stored within the trading partner’s repository and also the Shared CROMERR Services (SCS) repository.

1.3 Scope

This guide provides documentation of the Application Programming Interface (API) for the Shared CROMERR Second Factor Authentication Services developed by the EPA to be used by trading partners. This guide also describes in detail the corresponding operations and data types used in the service operations.

There are complementary API documents that address the other high-level categories of services described below and are available in the EPA CROMERR Shared Services kit for trading partners.

· Registration and Identity Management: The Registration and Identity Management category is a set of services that addresses all user tasks that are involved in creating, validating and maintaining user accounts.
Corresponding Services: (1) User Management; and (2) Identity Proofing
· Signature Ceremony: The Signature Ceremony category is a set of services that are used to authenticate credentials, verify user intent, and electronically sign regulated submissions in a way that binds the signature device to the submission and informs the submitter to provide non-repudiation.
Corresponding Services: (1) Second Factor Authentication; (2) Signature; and (3) Signature and Copy of Record
· Copy of Record Management: The Copy of Record (COR) category of services addresses all activities and functions for storing, maintaining, and retrieving the COR and associated notifications. 

Corresponding Service: Signature and Copy of Record
The services will be deployed on EPA servers and accessible by trading partners over the Internet. The following sections of this document will provide details of the Second Factor Authentication Services that the trading partners will invoke to orchestrate shared services from within their client applications. 
2 Using Second Factor Authentication Services

The Shared Services API presented in this document details the service level calls that the trading partner’s applications will invoke to perform certain functions. It also provides details of the parameters to be sent to the service and the return values sent back to the client application.  

In order to use the CROMERR shared services, trading partners will orchestrate the invocation of the services from within their client applications. Details of the client side implementation are dependent on the trading partner’s existing applications and integration with their internal systems, databases and security framework.  

The Shared Services Integrated Project Team (IPT)
 recommendation document provided sample uses cases to help a trading partner understand the flow of shared services calls using generic client side processes. These flowcharts will allow the trading partner to recognize integration points between shared services calls and their internal business and technical processes. 

Before making any user management service calls, the trading partner client application will invoke the authentication service and acquire a security token which will be used in all subsequent service calls in the same session.

The following list of service operations support the Shared CROMERR Second Factor Authentication Service and can be found in Section 4 of this document:

· Authenticate
· Create Activity
· AuditEvent
· AuthenticateUser
· GetQuestion
· AnswerQuestion
2.1 Trading Partner Manages User Credentials
In this scenario, the trading partner is responsible for storing and maintaining the CROMERR compliant user credentials and 2nd factor authentication information. The Knowledge Based Query (KBQ) can be of any format that the client chooses. The client will explicitly invoke AuditEvent() to audit the re-authentication of the user and the KBQ challenge response. As the trading partner’s CROMERR integration with the Shared Services does not use the Shared Registration Services, the client application will have to provide signature data in the shared service calls where stipulated to include all information necessary to construct a CROMERR compliant digital signature. 
Figure 2‑1 Workflow Diagram for 2nd Factor Authentication – Trading Partner Stores Credentials

[image: image2.emf]CROMERR Services

Trading Partner Audits Local Second Factor Authentication Service

EPA Trading Partner

S

e

s

s

i

o

n

Get Authentication Token

<<securityToken>>

Create CROMERR Activity CreateActivity()

Audit User Re-Authentication AuditEvent()

<<adminID, credential>>

Authenticate()

<<securityToken, dataflow, user, properties>>

<<activityId>>

Audit KBQ Process AuditEvent()

<<securityToken, activityId, event, user>>

<<securityToken, activityId, event, user>>


2.2 Shared CROMERR Services Manages User Credentials
In this scenario, the CROMERR Shared Services environment is responsible for storing and maintaining the CROMERR compliant user credentials and 2nd factor authentication information. The Knowledge Based Query (KBQ) will use the 20-5-1 format. The client does not have to explicitly invoke AuditEvent() since these are implicitly called within the other web services invoked. 

Figure 1‑2 Workflow Diagram for 2nd Factor Authentication – SCS Stores Credentials

[image: image3.emf]CROMERR Services

NC-DENR identity proofing using LexisNexis (Shared Identity Proofing Services)

CROMERR Services

Trading Partner Invokes Shared Second Factor Authentication Services

EPA NC-DENR EPA Trading Partner

S

e

s

s

i

o

n

S

e

s

s

i

o

n

Get Authentication Token

<<securityToken>>

Create CROMERR Activity CreateActivity()

Initiate LexisNexis Session InitiateSession()

<<adminID, credential>>

Authenticate()

<<securityToken, dataflow, user, properties>>

<<activityId>>

Get KBQ Question GetResult()

<<securityToken, activityId, user>>

<<securityToken, activityId>>

<<void>>

<<result>>

Get Authentication Token

<<securityToken>>

Create CROMERR Activity CreateActivity()

Authenticate User AutheticateUser()

<<adminID, credential>>

Authenticate()

<<securityToken, dataflow, user, properties>>

<<activityId>>

GetQuestion()

<<securityToken, activityId, user, password>>

<<securityToken, activityId, user>>

<<question>>

Validate KBQ Answer AnswerQuestion()

<<securityToken, activityId, answer>>

<<void>>


3 CROMERR Shared Services Data Types
This section describes the data types that will be used in the service calls. These data types are used in the shared services operations described in Section 3 CROMERR Shared Signature and Validate COR Service Calls.
3.1 UserType

The UserType defines the base user profile elements that will be used in the CROMERR Shared Services calls.

<xs:complexType name="UserType">

    <xs:sequence>

      <xs:element name="UserId" type="xs:string"/>

      <xs:element name="FirstName" type="xs:string"/>

      <xs:element name="LastName" type="xs:string"/>

      <xs:element minOccurs="0" name="MiddleInitial" type="xs:string"/>

    </xs:sequence>

</xs:complexType>
	Element
	Definition/Constraints
	Max Length
	Default Value

	1. UserID
	The user selected user identification string
	long
	(None)

	2. FirstName
	User’s first name.
	255
	(None)

	3. LastName
	User’s last name
	255
	(None)

	4. MiddleInitial
	User’s middle initial
	255
	(None)


3.2 PropertyType

The PropertyType encapsulates a single Key-Value pair. This type is provided for future use by the client applications to send client specific information for use in the CROMERR Shared Services operations.

<xs:complexType name="PropertyType">

    <xs:sequence>

      <xs:element minOccurs="0" name="Key" type="xs:string"/>

      <xs:element minOccurs="0" name="Value" type="xs:string"/>

    </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Key
	A string name for the Key
	255
	(None)

	2. Value
	The Value for the Key
	255
	(None)


3.3 PropertiesType

This type is a collection of zero or more PropertyType elements. As described in the PropertyType definition above, this type is provided for future expansion of the CROMERR Shared Services framework.

<xs:complexType name="PropertiesType">

    <xs:sequence>

      <xs:element maxOccurs="unbounded" minOccurs="0" name="Property"       type="tns:PropertyType"/>

    </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. PropertyType
	A property type element
	N/A
	(None)


3.4 EventTypeType
The EventType element is used by the shared services operation to describe the type of operation the client invoked or the shared service initiated. It encapsulates a string element that can be one of six values as shown below:
<xs:simpleType name="EventTypeType">

    <xs:restriction base="xs:string">

      <xs:enumeration value="Authenticate"/>

      <xs:enumeration value="GetQuestion"/>

      <xs:enumeration value="ValidateAnswer"/>

      <xs:enumeration value="SignDetached"/>

      <xs:enumeration value="StoreDocument"/>

      <xs:enumeration value="DownloadDocument"/>

    </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. EventType
	An event type is a string which can take one of the following values:

· Authenticate
· GetQuestion

· ValidateAnswer

· SignDetached

· StoreDocument

· DownloadDocument
	N/A
	(None)


3.5 EventStatusType

The EventStatusType is a return type that encapsulates a flag that describes the status of the operation that the client invoked or the shared service initiated. The event status element is a string that can be either “Success” or “Failure” as shown below:
<xs:simpleType name="EventStatusType">

    <xs:restriction base="xs:string">

      <xs:enumeration value="Success"/>

      <xs:enumeration value="Failure"/>

    </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. EventStatusType
	An event type can take one of the following values:

· Success
· Failure
	N/A
	(None)


3.6 QuestionType

The QuestionType encapsulates two parameters; the unique identifier for that question in the CROMERR shared services repository and the text of the question in the repository.

<xs:complexType name="QuestionType">

    <xs:sequence>

      <xs:element name="QuestionId" type="xs:string"/>

      <xs:element name="QuestionText" type="xs:string"/>

    </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. QuestionId
	The unique identifier for the question
	255
	(None)

	2. QuestionText
	The text of the question
	255
	(None)


3.7 AnswerType

The AnswerType encapsulates the QuestionId and the text of the answer that the user provides in response.

<xs:complexType name="AnswerType">

    <xs:sequence>

      <xs:element name="QuestionId" type="xs:string"/>

      <xs:element name="AnswerText" type="xs:string"/>

    </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. QuestionId
	The unique identifier for the question
	255
	(None)

	2. AnswerText
	The text of the users response to the question.
	255
	(None)


3.8 SharedCromerrFault

This complex type encapsulates a SharedCromerrErrorCode and a text description of the error.

<xs:complexType name="SharedCromerrFault">

    <xs:sequence>

      <xs:element name="errorCode" nillable="true" type="tns:SharedCromerrErrorCode"/>

      <xs:element name="description" nillable="true" type="xs:string"/>

    </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. errorCode
	A complex type defined in Section 2.9
	N/A
	(None)

	2. description
	A text description of the fault
	N/A
	(None)


3.9 SharedCromerrErrorCode

This type defines the error codes that will be returned by the services if the service encounters an exception.

<xs:simpleType name="SharedCromerrErrorCode">

    <xs:restriction base="xs:string">

      <xs:enumeration value="E_Unknown"/>

      <xs:enumeration value="E_UnknownUser"/>

      <xs:enumeration value="E_InvalidCredential"/>

      <xs:enumeration value="E_AccountLocked"/>

      <xs:enumeration value="E_AccessDenied"/>

      <xs:enumeration value="E_TokenExpired"/>

      <xs:enumeration value="E_InvalidToken"/>

      <xs:enumeration value="E_InvalidDataflowName"/>

      <xs:enumeration value="E_InvalidArgument"/>

      <xs:enumeration value="E_InsufficientPrivileges"/>

      <xs:enumeration value="E_InvalidSignature"/>

      <xs:enumeration value="E_WrongIdPassword"/>

      <xs:enumeration value="E_AccountExpired"/>

      <xs:enumeration value="E_WrongAnswer"/>

    </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. SharedCromerrErrorCode
	This element can have one of the following values:

· E_Unknown

· E_UnknownUser

· E_InvalidCredential

· E_AccountLocked

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

· E_InvalidSignature

· E_WrongIdPassword

· E_AccountExpired

· E_WrongAnswer
	N/A
	(None)


A complete table of Error Codes, Error Messages and Descriptions, is shown below. 

	Error Code
	Error Message
	Description

	1. E_Unknown
	An unknown error occurred during authentication.
	Indicates that an unexpected or unidentified error has occurred on the server

	2. E_UnknownUser
	Unable to authenticate user - The user account could not be located.
	Indicates that the service could not authenticate the user because the user account could not be located

	3. E_InvalidCredential
	Unable to authenticate user - The password is invalid.
	Indicates that the service could not authenticate the user because the user- supplied password was invalid

	4. E_AccountLocked
	Unable to authenticate user -The account is invalid
	Indicates that the account the user is accessing is locked

	5. E_AccessDenied
	The security token was issued to another machine
	Indicates that the client made a service call using another user’s security token

	6. E_AccessDenied
	Access is not permitted based on policy.
	Indicates that the trading partner is not permitted to access the shared services operation

	7. E_TokenExpired
	The security token has expired
	Indicates that the security token that was created by the Authenticate operation is no longer valid

	8. E_InvalidToken
	The security token was not issued by this authority
	Indicates that the security token provided in the operation call is invalid

	9. E_InvalidDataflowName
	You must specify a dataflow name
	Indicates that the client did not specify a required dataflow name

	10. E_InvalidDataflowName
	You have specified an invalid dataflow name
	Indicates that the dataflow specified in the call is not configured for the trading partner

	11. E_InvalidArgument
	Note:  This is a customized message based on the specific argument name that caused the error
	Indicates that the specified argument is missing or incorrect

	12. E_InsufficientPrivileges
	Partner cannot access this activity
	Indicates that a user associated with a particular partner is trying to access an activity associated with a different partner

	13. E_InvalidSignature
	Invalid Signature
	Indicates that the signature has been deemed invalid. The most common cases are incorrect signature data (i.e. hashes) on validation, signature cert generated by an invalid Certification Authority (CA), etc.

	14. E_WrongIdPassword
	Note: This is a provider specific message based on their implementation of 2nd factor authentication services.
	Indicates that 2nd factor authentication failed because the username or password is invalid

	15. E_AccountExpired
	Note: This is a provider specific message based on their implementation of 2nd factor authentication services.
	Indicates that 2nd factor authentication failed because the account has expired

	16. E_WrongAnswer
	Note: This is a provider specific message based on their implementation of 2nd factor authentication services.
	Indicates that 2nd factor authentication failed because the answer provided by the user was incorrect


3.10 EventGroupType
This simple type is used to describe the Event that will be logged.

  <xs:simpleType name="EventGroupType">

    <xs:restriction base="xs:string">

      <xs:enumeration value="Signature"/>

      <xs:enumeration value="Authentication"/>

      <xs:enumeration value="SecondFactor"/>

    </xs:restriction>

  </xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. EventGroup
	EventGroup can take on one of the following values:

· Signature

· Authentication

· SecondFactor
	N/A
	(None)


3.11 EventType
An EventType is a complex type that encapsulates elements that describe an Event.

  <xs:complexType name="Event">

    <xs:sequence>

      <xs:element name="date" type="xs:dateTime"/>

      <xs:element name="group" type="tns:EventGroup"/>

      <xs:element name="type" type="tns:EventType"/>

      <xs:element name="status" type="tns:EventStatusType"/>

    </xs:sequence>

  </xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. date
	XML schema Date/Time data type
	N/A
	(None)

	2. group
	A complex type defined in Section 2.16
	N/A
	(None)

	3. type
	A complex type defined in Section 2.4
	N/A
	(None)

	4. status
	A complex type defined in Section 2.5
	N/A
	(None)


4 CROMERR Shared Signature and Validate COR Service Calls
In order to consume the shared services provided, the client application has to perform a set of tasks before the invocation of services. An overview of these steps is provided below and will be repeated in each section at the appropriate points of integration before the service calls:
1. The first pre-requisite is that the client application has a Network Authentication and Authorization Services (NAAS) account. The user account must have appropriate access privileges to allow it to utilize shared services.

2. For each workflow, the client application will invoke the Authenticate() method on the server to receive a security token that will be used for the entire session.

3. The client application will then create an activity by invoking the CreateActivity() method and will receive an activityID that will be used for all subsequent invocations.

4. The client will then invoke the appropriate CROMERR shared service for their workflow.
The following are general guidelines for trading partners for designing client applications to consume CROMERR shared services:
1. The services support MTOM (W3C Message Transmission Optimization Mechanism) by default for operations where large documents are sent. While client-server communication will still work without the MTOM feature documents will be sent as base64 encoded and will involve significant overhead.

2. HTTP chunking should be turned on for greater efficiency in the client-server communications.

3. The client side application will set reasonable HTTP connection/read timeouts. A recommended value is 5 minutes for each.
4. The client side application will ensure that SOAP 1.2 binding is used. This is not the default setup in all toolkits.
5. The trading partner will make sure that all SSL certificates provided are trusted in their SSL configuration stack.
4.1 Authenticate

4.1.1.1 Description

The server must authenticate the client before invoking any services. The Authenticate operation will provide a securityToken on successful authentication of the user or will throw an exception.

4.1.1.2 Definition

The Authenticate operation is defined as:
<wsdl:operation name="Authenticate">

      <wsdl:input message="tns:Authenticate" name="Authenticate">

    </wsdl:input>

      <wsdl:output message="tns:AuthenticateResponse" name="AuthenticateResponse">

    </wsdl:output>

      <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

    </wsdl:fault>

</wsdl:operation>

The Authenticate input message is shown below:
<xs:complexType name="Authenticate">

    <xs:sequence>

      <xs:element name="adminId" type="xs:string"/>

      <xs:element name="credential" type="xs:string"/>

    </xs:sequence>

</xs:complexType>

The AuthenticateResponse output message is shown below:
<xs:complexType name="AuthenticateResponse">

    <xs:sequence>

      <xs:element minOccurs="0" name="securityToken" type="xs:string"/>

    </xs:sequence>

</xs:complexType>

4.1.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. Authenticate
	adminId
	Yes
	CROMERR Shared Services Administration ID

	2. Authenticate
	credential
	Yes
	CROMERR Shared Services Administration password


4.1.1.4 Return

If the operation is successful it returns a NAAS security token.

4.1.1.5 Exceptions

If the service failed it returns following error codes:

· E_Unknown

· E_UnknownUser

· E_InvalidCredential

· E_AccountLocked

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 2.9.
4.2 Create Activity

4.2.1.1 Description

The CreateActivity operation will be used by the client application to create a CROMERR Activity. This CROMERR Activity enables the shared service provider to associate all related CROMERR events such as authentication and signature with a unique transaction ID. It also provides the way to pass specific application properties to shared services. This service shall be invoked after the Authenticate service and prior to invoking other shared services.

4.2.1.2 Definition

The CreateActivity operation is defined as:
<wsdl:operation name="CreateActivity">

      <wsdl:input message="tns:CreateActivity" name="CreateActivity">

    </wsdl:input>

      <wsdl:output message="tns:CreateActivityResponse" name="CreateActivityResponse">

    </wsdl:output>

      <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

    </wsdl:fault>

</wsdl:operation>

The CreateActivity input message is shown below:
<xs:complexType name="CreateActivity">

    <xs:sequence>

      <xs:element name="securityToken" type="xs:string"/>

      <xs:element name="dataflow" type="xs:string"/>

      <xs:element name="user" type="tns:UserType"/>

      <xs:element minOccurs="0" name="properties" type="tns:PropertiesType"/>

    </xs:sequence>

</xs:complexType>

The CreateActivityResponse output message is shown below:
<xs:complexType name="CreateActivityResponse">

    <xs:sequence>

      <xs:element minOccurs="0" name="activityId" type="xs:string"/>

    </xs:sequence>

</xs:complexType>
4.2.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. CreateActivity
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. CreateActivity
	dataflow
	Yes
	The name of the dataflow for this activity. The dataflow shall be registered with shared services prior to any activities

	3. CreateActivity
	user
	Yes
	The user associated with the CreateActivity and is of the type defined in the Section 2.1 UserType.

	4. CreateActivity
	properties
	Yes
	Note:  This argument is made available for future expansion of the CROMERR Shared Services


4.2.1.4 Return

If the operation is successful it returns a CROMERR Activity ID
4.2.1.5 Exceptions

If the service failed it returns following error codes:

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 2.9.
4.3 AuditEvent

4.3.1.1 Description

The AuditEvent operation will be used by the client application to submit various events performed on the client side related to signature process such as user authentication, signature storage, etc. These events will be associated with previously created CROMERR Activity.

4.3.1.2 Definition

The AuditEvent operation is defined as:
<wsdl:operation name="AuditEvent">

      <wsdl:input message="tns:AuditEvent" name="AuditEvent">

    </wsdl:input>

      <wsdl:output message="tns:AuditEventResponse" name="AuditEventResponse">

    </wsdl:output>

      <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

    </wsdl:fault>

</wsdl:operation>

The AuditEvent input message is shown below:
<xs:complexType name="AuditEvent">

    <xs:sequence>

      <xs:element name="securityToken" type="xs:string"/>

      <xs:element name="activityId" type="xs:string"/>

      <xs:element name="event" type="tns:EventType"/>

      <xs:element name="user" type="tns:UserType"/>

    </xs:sequence>

</xs:complexType>

The AuditEventResponse output message is shown below:
<xs:complexType name="AuditEventResponse">

    <xs:sequence/>

</xs:complexType>

4.3.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. AuditEvent
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. AuditEvent
	activityId
	Yes
	CROMERR Activity ID returned by CreateActivity

	3. AuditEvent
	event
	Yes
	An EventType of the type defined in Section 2.4. 

	4. AuditEvent
	user
	Yes
	The user associated with this event and is of the type defined in the Section 2.1.


4.3.1.4 Return

This operation returns a void.
4.3.1.5 Exceptions
If the service failed it returns following error codes:

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDateflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 2.9.
4.4 AuthenticateUser
4.4.1.1 Description

Prior to invoking this operation, the user will have registered in the CROMERR shared services environment. After successful invocation of Authenticate and CreateActivity services, the AuthenticateUser operation is used to authenticate the user who wishes to gain access to the CROMERR second factor shared services environment. The user will provide their username and password which will be validated by this shared service.
4.4.1.2 Definition

The AuthenticateUser operation is defined as:

<wsdl:operation name="AuthenticateUser">

  <wsdl:input message="tns:AuthenticateUser" name="AuthenticateUser">

  </wsdl:input>

  <wsdl:output
message="tns:AuthenticateUserResponse" name="AuthenticateUserResponse">

  </wsdl:output>

  <wsdl:fault
message="tns:SharedCromerrException" name="SharedCromerrException">

  </wsdl:fault>

</wsdl:operation>
The AuthenticateUser input message is shown below:
<xs:complexType name="AuthenticateUser">

    <xs:sequence>

      <xs:element name="securityToken" type="xs:string"/>

      <xs:element name="activityId" type="xs:string"/>

      <xs:element name="user" type="xs:string"/>

      <xs:element name="password" type="xs:string"/>

    </xs:sequence>

</xs:complexType>
The AuthenticateUser output message is shown below:
<xs:complexType name="AuthenticateUserResponse">

    <xs:sequence/>

</xs:complexType>
4.4.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1.AuthenticateUser
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2.AuthenticateUser
	activityId
	Yes
	CROMERR Activity Id returned by the CreateActivity

	3.AuthenticateUser
	user
	Yes
	The user id of the end user.

	4.AuthenticateUser
	password
	Yes
	The password chosen by the user during registration.


4.4.1.4 Return

If the operation is successful and the user is authenticated, nothing is returned. If the authentication of the user fails, an exception is thrown which contains an error code and error message. 
4.4.1.5 Exceptions

If the service fails it returns following error codes:

· E_Unknown
· E_UnknownUser
· E_InvalidCredential
· AccountLocked
The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 2.9.
4.5 GetQuestion
4.5.1.1 Description

The GetQuestion operation will be used by the client application to request shared services to send back one question from the pool of questions for second factor authentication..
4.5.1.2 Definition

The GetQuestion operation is defined as:
<wsdl:operation name="GetQuestion">

  <wsdl:input message="tns:GetQuestion" name="GetQuestion">

  </wsdl:input>

  <wsdl:output message="tns:GetQuestionResponse" name="GetQuestionResponse">

  </wsdl:output>

  <wsdl:fault
message="tns:SharedCromerrException" name="SharedCromerrException">

  </wsdl:fault>

</wsdl:operation>

The GetQuestion input message is shown below:
<xs:complexType name="GetQuestion">

    <xs:sequence>

      <xs:element name="securityToken" type="xs:string"/>

      <xs:element name="activityId" type="xs:string"/>

      <xs:element name="user" type="tns:UserType"/>

    </xs:sequence>

</xs:complexType>
The GetQuestionResponse output message is shown below:
<xs:complexType name="GetQuestionResponse">

    <xs:sequence>

      <xs:element name="question" type="tns:QuestionType"/>

    </xs:sequence>

</xs:complexType>
4.5.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. GetQuestion
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. GetQuestion
	activityId
	Yes
	CROMERR Activity Id returned by the CreateActivity service

	3. GetQuestion
	user
	Yes
	The user information is of the type defined in Section 2.1.


4.5.1.4 Return

If the GetQuestion operation is successful a question (QuestionType) will be returned that encapsulates the question Id number in the repository along with the text of the question selected.
4.5.1.5 Exceptions

If the service fails it returns following error codes: 

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 2.9.
4.6 AnswerQuestion

4.6.1.1 Description

The AnswerQuestion operation will be used by the client application to send the user’s answer to the randomly selected question that was sent back in the GetQuestionResponse after the invocation of the GetQuestion service.
4.6.1.2 Definition

The AnswerQuestion operation is defined as:
<wsdl:operation name="AnswerQuestion">

  <wsdl:input message="tns:AnswerQuestion" name="AnswerQuestion">

  </wsdl:input>

  <wsdl:output
message="tns:AnswerQuestionResponse
name="AnswerQuestionResponse">

  </wsdl:output>

  <wsdl:fault
message="tns:SharedCromerrException" name="SharedCromerrException">

    </wsdl:fault>

</wsdl:operation>

The AnswerQuestion input message is shown below:
<xs:complexType name="AnswerQuestion">

    <xs:sequence>

      <xs:element name="securityToken" type="xs:string"/>

      <xs:element name="activityId" type="xs:string"/>

      <xs:element name="user" type="tns:UserType"/>

      <xs:element name="answer" type="tns:AnswerType"/>

    </xs:sequence>

</xs:complexType>
The AnswerQuestionResponse output message is shown below:

<xs:complexType name="AnswerQuestionResponse">

    <xs:sequence/>

</xs:complexType>
4.6.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. AnswerQuestion
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. AnswerQuestion
	activityId
	Yes
	CROMERR Activity Id returned by the CreateActivity service

	3. AnswerQuestion
	user
	Yes
	The user information is of the type defined in Section 2.1.

	4. AnswerQuestion
	answer
	Yes
	The answer is of type defined in Section 2.7


4.6.1.4 Return

If the GetQuestion operation is successful a question will be returned that encapsulates the question Id number in the repository along with the text of the question selected.
4.6.1.5 Exceptions

If the service fails it returns following error codes: 

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidArgument

· E_InsufficientPrivileges
· E_WrongAnswer
The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 2.9.

Shared CROMERR Services





Application Programming Interface (API) Document





Second Factor Authentication Services








Version: 0.2


Revision Date: February 20, 2014























� http://www.exchangenetwork.net/shared-cromerr-services-ipt/ 





PAGE  
8

_1425282218.vsd
Title


Function


Phase�

�

Function


�


_1425229485.vsd
Title


Function


Phase�

�

Function


�


