ODPX Flow Configuration Document v 1.0
7/30/2010

[image: image1.jpg]Sead
- <xsd

|
angenelwor%_ e,

I XML 3.0 Point dataxsd:documer

Available:htt,
cumentation>

PR

espace="http:/
"httpi/ /www.)
="EN_NEI http: ffwww.

i Def

mat</xsd:documentation>
t 1>Application: Varies by
1entation
) steloped By:

“UTE-8" e
Wil x

/\A}wv»/.\,v3.org/20. /XMLSche I

epa.gov/ angenetwork"”
ied" attributeFormDefault

pa.gov/e ang

tation>
Current Ver:
! /www.ej ov/

>Description: The NEI
ol
l:documentat 4
Application: Varies by
 tation> -

Environmental Information

e)@nhange

etwork

THIS PAGE INTENTIONALLY LEFT BLANK

Table of Contents

3Table of Contents

1
Change Tracking Log
4
2
Version and Component Alignment
5
2.1
Flow Component Versions Currently Supported
5
3
Introduction
6
3.1
Flow Identification
6
3.2
Background
6
3.3
Data Flow Overview
7
3.4
Flow Access and Security
7
3.5
Flow-level Business Rules
8
3.6
Additional Flow Tools and Resources
12
4
Data Processing
12
4.1
Submission Processing and Feedback
12
4.1.1
Type: Submit
12
4.1.2
Node to Node
15
5
Data Publishing
15
5.1
Query and Retrieval of Data
16
5.1.1
Data Discovery and Download Mapping Interface
16
5.1.2
Data Discovery and Download Query Page
16
6
Schema Information
17
6.1
Schema Structure
17
7
Appendix A – Implementation Checklist
17
7.1
Join the NeCODP
17
7.2
Get a NAAS Account
17
7.3
Download and Install Node Client
17
7.4
Map Data to the ODPX XML Schema
17
7.5
Generate XML File of Data
18
7.6
Validate XML Document
18
7.7
Submit XML File(s) to ODPX Node
18
Appendix B – Schema Structure
19

1 Change Tracking Log

	Date
	Version
	Description
	Author

	July 2010
	1.0
	Initial version of this document
	R. Young Morse

	
	
	
	

	
	
	
	

2 Version and Component Alignment
The following table indicates the versions of related documents and components to which this configuration document applies.

2.1 Flow Component Versions Currently Supported

	Component
	Version(s) Supported
	Explanation (optional)

	FCD
	v 1.0
	Original Version – Developed 7/30/2010

	Schema
	v 1.0
	Original Version – Developed 12/30/2010

	DET
	v 1.0
	Original Version – Developed 12/15/2010

3 Introduction

3.1 Flow Identification

Flow Name: Ocean Data Partnership EXchange (ODPX)

Flow Owner: Ian Ogilvie, Riley Young Morse – Gulf of Maine Research Institute; Deb Soule – NH Department of Environmental Services

Flow Owner Contact Information:

Ian Ogilvie
ODPX Node Manager
Gulf of Maine Research Institute
iogilvie@gmri.org

207-529-4442

Riley Young Morse
Technical Project Manager
Gulf of Maine Research Institute

rmorse@gmri.org

207-228-1663

Deb Soule
Grant Manager

NH Department of Environmental Services

Deb.Soule@des.nh.gov

603-271-8863
3.2 Background

The Northeast Coastal and Ocean Data Partnership Data Exchange (ODPX) was established to facilitate the exchange and accessibility of environmental data in the greater Gulf of Maine region and its contributing watershed. It is a project of the Northeast Coastal and Ocean Data Partnership (NeCODP), and is supported through a National Environmental Information Exchange Network (NEIEN) collaborative grant.

The project goal was to establish a flow that would allow NeCODP partners to exchange oceanographic and environmental data using the infrastructure of the Exchange Network. As a result, the data would be available through the Exchange Network through the ODPX flow. This project would allow NeCODP partners to improve interoperability of data in the region.

This flow was developed by 6 grant funded partners and 7 non-funded partners representing state and federal government, academia and the non-profit sector with representatives from the United States and Canada. Members of this partnership agree to use standards developed through the NEIEN to exchange environmental data from Northeast region.

The ODPX Exchange is a non-regulatory, multi-lateral exchange, with all trading partners agreeing to a particular set of data elements, schemas, flow conditions and exchange rules described in this document.

List of participating partners:

Fisheries and Oceans Canada (DFO)

Gulf of Maine Council on the Marine Environment (GOMC)

Gulf of Maine Ocean Observing System (GoMOOS)

Maine Department of Marine Resources (DMR)

New Hampshire Department of Environmental Services (NHDES)

Northeast Fisheries Science Center (NFSC-NOAA)

Tufts University – Seabird Ecological Assessment Network (SEANET)

United States Geological Survey (USGS)

University of New Hampshire, Center of Excellence for Coastal Ocean Observation and Analysis (COOA)

University of South Carolina Research Foundation (USC) – integrating data from the National Estuarine Research Reserve System (NERRS)

USEPA Atlantic Ecology Division (AED)
Woods Hole Oceanographic Institute (WHOI)

3.3 Data Flow Overview

Version 1.0 of the ODPX flow makes watershed and oceanographic data submitted by partners from the Northeast and Coastal Ocean Data Partnership available on the Exchange Network.

The ODPX flow is based largely on the WQX. Additional standards-based elements were added as needed to accommodate partner data. These include catalog components (using the Global Change Master Directory and the NJ Data Exchange), geospatial components (GeoRSS and GML) and the Sensor Web Enablement Sensor Observation Service (SOS) service from the Open Geospatial Consortium for time-series data.

At the time this document was created, the ODPX flow includes the following types of data:

· Beach and water quality data (NH DES)

· Time-series buoy data from the Gulf of Maine (NERACOOS and UNH)

· Beach surveys for dead birds (SEANET)

· Fisheries data from trawl surveys (DFO)

· Bottom temperature from lobster traps (eMOLT)

· Environmental data from the National Estuarine Research Reserves in the Northeast (NERRS)

· Mussel contaminant indicator data (Gulfwatch)

The ODPX Node was installed and configured using OpenNode2 Java version. A custom plug-in was developed in Java using the WQX plug-in as an example. The node database is PostgresQL.

3.4 Flow Access and Security

The process of submitting data to the ODP node will be secure. Partners will be given a NAAS authentication key to prohibit unauthorized access to the node. Once data are submitted to the node, the data itself will not be confidential, as the data access mechanism will be a public-facing web portal.

The primary method for submitting data to the node is through the NodeClientLite2 software developed by Windsor Solutions. A tutorial was developed to help users install and make contact with the ODPX node.

http://odpdx.neracoos.org/participate/submitting_data/node_client
Data can also be submitted node to node as in the case of the New Hampshire Department of Environmental Services.
3.5 Flow-level Business Rules

Current Business Rules:

The following is a summary of the data rules enforced on the submitted XML document:

1. The document must be well formed and validate against the ODPX schema.

a. This includes rules for field lengths, required fields and number of occurrences.

2. The XML must use domain list values from the data exchange template.

The following is a summary of the business rules for the XML schema:

1. OrganizationIdentifier is required.

2. OrganizationFormalName is required.

3. OrganizationTypeText domain list value is required.

4. OrganizationContact: LastName is required. If db only has one column for first and last name, enter them here.

5. ElectronicAddressText is required if ElectronicAddressTypeName is used at the Organization level.

6. ElectronicAddressTypeName is required if ElectronicAddressText is used at the Organization level.
7. TelephoneNumberText is required if TelephoneNumberTypeName is used at the Organization level.

8. TelephoneNumberTypeName is required if TelephoneNumberText is used at the Organization level..
9. ProjectIdentifier is required. This short identifier supports the requirement to update or edit an existing project, subsequent to its initial entry, without repeating all of its component parts.

10. ProjectEndDate is required if DataSetProgress = “completed”.

11. URL is required if URLDesc is used at the Project level.

12. URLDesc is required if URL is used at the Project level.

13. AffiliationTypeText domain list value is required.

14. ProjectContact: LastName is required.

15. ElectronicAddress: ElectronicAddressText is required.

16. ElectronicAddress: ElectronicAddressTypeName is required.

17. TelephoneNumberText is required if TelephoneNumberType name is present at Project level.

18. TelephoneNumberTypeName is required if TelephoneNumberText is present at Project level.

19. GCMDParameters: if this is used, an ISOTopicCategory domain list is required.
20. URL is required if URLDesc is used at Data Set Citation level.

21. URLDesc is required if URL is used at Data Set Citation level.
22. ProjectAttachedBinaryObject: BinaryObjectFileName is required only when ProjectAttachedBinaryObject is reported. Must provide either ProjectDescriptionText or supply a ProjectAttachedBinaryObject.

23. ProjectAttachedBinaryObject; BinaryObjectFileTypeCode is required only when BinaryObjectFileName is reported.

24. Cataloginfo: CreateDate is automatically inserted by the application.

25. Cataloginfo: CreateBy is automatically inserted by the application.

26. Cataloginfo: RevisionDate is automatically inserted by the application.

27. Cataloginfo: RevisedBy is automatically inserted by the application.

28. MonitoringLocationIdentifier is required. This short identifier supports the requirement to update or edit an existing station, subsequent to its initial entry, without repeating all of its component parts.

29. MonitoringLocationGeospatial: Envelop is required. Point, line and polygon values are acceptable.

30. MonitoringLocationGeospatial: Datum is required. See http://inovagis.terradue.com/giserver/epsg.asp for correct EPSG value.

31. MontoringLocationGeospatial: Position is required.

32. HorizontalAccuracyMeasure: MeasureValue is required if HorizontalAccuracyMeasure MeasureUnitCode is reported.

33. HorizontalAccuracyMeasure: MeasureUnitCode is required if HorizontalAccuracyMeasure: MeasureValue is reported.

34. HorizontalAccuracyMeasure: HorizontalCollectionMethodName - if used, must use domain list.

35. AttachedBinaryObject: BinaryObjectFileName is required if MonitoringLocation: AttachedBinaryObject is present.

36. AttachedBinaryObject: BinaryObjectFileTypeCode is required if MonitoringLocation: AttachedBinaryObject is present.

37. Activity: ActivityIndicator is required. This short identifier supports the requirement to update or edit an existing activity, subsequent to its initial entry, without repeating all of it’s component parts.

38. Activity: ActivityTypeCode domain list value is required.

39. Activity: ActivityMediaName domain list value is required.

40. ActivityStartTime: Time is required only when ActivityStartTime block is reported.

41. ActivityStartTime: TimeZoneCode is required only when ActivityStartTime block is reported.

42. ActivityEndTime: Time is required only when ActivityEndTime block is reported.

43. ActivityEndTime: TimeZoneCode is required only when ActivityEndTime block is reported.
44. ActivityDepthHeightMeasure: MeasureValue is required if ActivityDepthHeightMeasure block is reported.

45. ActivityDepthHeightMeasure: MeasureUnitCode is required if ActivityDepthHeightMeasure block is reported.

46. ActivityTopDepthHeightMeasure: MeasureValue is required if ActivityTopDepthHeightMeasure block is reported.

47. ActivityTopDepthHeightMeasure: MeasureUnitCode is required if ActivityTopDepthHeightMeasure block is reported.

48. ActivityBottomDepthHeightMeasure: MeasureValue is required if ActivityBottomDepthHeightMeasure block is reported.
49. ActivityBottomDepthHeightMeasure: MeasureUnitCode is required if ActivityBottomDepthHeightMeasure block is reported.
50. ActivityBottomDepthHeightMeasure: ProjectIdentfier is required.

51. ActivityBottomDepthHeightMeasure: MonitoringLocationIdentifier is conditionally required. Although the schema doesn't enforce this, some activity types will require that a monitoring location is present. This MonitoringLocationIdentifer needs to correspond to either a MonitoringLocationIdentifier reported in the MonitoringLocationIdentity block of this submission or previously submitted to the system.

52. ActivityDescriptionOnly: ActivityIdentifier is required. This short identifier supports the requirement to update or edit an existing activity, subsequent to its initial entry, without repeating all of its component parts.

53. ActivityLocation: Envelope is required if any part of the block is entered.

54. ActivityLocation: Datum is required if any part of the block is entered.

55. ActivityLocation: Position is required if any part of the block is entered.
56. AssemblageSampledName is required if ActivityMediaName is “Biological”.

57. CollectionDuration: MeasureValue is required if CollectionDuration block is reported.

58. CollectionDuration: MeasureUnitCode is required if CollectionDuration block is reported.
59. ReachLengthMeasure: MeasureValue is required if ReachLengthMeasure block is reported.

60. ReachLengthMeasure: MeasureUnitCode is required if ReachLengthMeasure block is reported.

61. ReachWidthMeasure: MeasureValue is required if ReachWidthMeasure block is reported.

62. ReachWidthMeasure: MeasureUnitCode is required if ReachWidthMeasure block is reported.

63. NetInformation: NetTypeName is required if NetInformation block is reported.

64. NetSurfaceAreaMeasure: MeasureValue is required if NetInformation block is reported.

65. NetSurfaceAreaMeasure: MeasureUnitCode is required if NetInformation block is reported.

66. NetMeshSizeMeasure: MeasureValue is required if NetInformation block is reported.

67. NetMeshSizeMeasure: MeasureUnitCode is required if NetInformation block is reported.

68. BoatSpeedDirection: MeasureValue is required if BoatSpeedMeasure block is reported.

69. BoatSpeedDirection: MeasureUnitCode is required if BoatSpeedMeasure block is reported.

70. BoatSpeedMeasure: MeasureValue is required if BoatSpeedMeasure block is reported.
71. BoatSpeedMeasure: MeasureUnitCode is required if BoatSpeedMeasure block is reported.

72. CurrentDirection: MeaureValue s required if CurrentSpeedMeasure block is reported.

73. CurrentDirection: MeasureUnitCode is required if CurrentSpeedMeasure block is reported.

74. CurrentSpeedMeasure: MeasureValue is required if CurrentSpeedMeasure block is reported.

75. CurrentSpeedMeasure: MeasureUnitCode is required if CurrentSpeedMeasure block is reported.

76. MethodDescriptionText is required if MethodIdentifier, MethodIdentifierContext and MethodName are not entered.

77. SampleCollectionEquipmentName is required when SampleCollectionMethod block is present. If NetInformation block is present, then the TypeName for the SampleCollectionEquipmentName must match the NetTypeName that is supplied.
78. SamplePreparation: MethodIdentifier is required if SamplePreparationMehod block is present and MethodDescriptionText is not entered.
79. SamplePreparation: MethodIdentifierContext is required if SamplePreparationMethod block is present and MethodDescriptionText is not entered.
80. SamplePreparation: MethodName is required if SamplePreparationMethod block is present and MethodDescriptionText is not entered.
81. SamplePreparation: MethodDescriptionText is required if SamplePreparationMethod block is present and MethodIdentifier, MethodIdentifierContext, and MethodName are not entered.
82. AttachedBinaryObject: BinaryObjectFileName is required if Activity: AttachedBinaryObject is present.

83. AttachedBinaryObject: BinaryObjectFileTypeCode is required if Activity: AttachedBinaryObject is present.

84. Result: For time series data such as buoy or trawl data, suggest using SWE format result time series block in row 275. See SWE worksheet in DET for details.

85. Result: ResultDetectionConditionText is required if "ResultValue/ValueMeasure" is blank.

86. Result: CharacteristicName is required if ResultValue:ValueMeasure is reported.

87. Result:ResultSampleFractionText domain list is required for certain characteristics.
88. ResultMeasure: ResultMeasureValue is required if DetectionCondition is blank. No entry is allowed here if there is an entry in the ResultDetectionCondition.

89. ResultMeasure: MeasureUnitCode is required if a non text result is reported; can also be reported for non-numeric results.

90. ResultMeasure: ResultStatusIdentifier is required if result is present.

91. ResultMeasure: ResultValueTypeName domain list is required if result is non text. Default is actual.
92. ResultDepthHeightMeasure: MeasureValue is required if ResultDepthHeightMeasure block is reported.

93. ResultDepthHeightMeasure: MeasureUnitCode is required if ResultDepthHeightMeasure block is reported.
94. BiologicalResultDescription: BiologicalIntentName is required if BiologicalResultDescription block is reported.

95. BiologicalResultDescription: SubjectTaxonomicaName is required if BiologicalResultDescription block is reported.

96. GroupSummaryCountWeight: MeasureValue is required if GroupSummaryCountWeight block is present.

97. GroupSummaryCountWeight: MeasureUnitCode is required if GroupSummaryCountWeight block is present.

98. FrequencyClassInformation: FrequencyClassDescriptorCode is required if FrequencyClassInformation block is reported.

99. FrequencyClassInformation: FrequencyClassDescriptorUnitCode is required if FrequencyClassDescriptorCode type = 'Measured Characteristic'
100. FrequencyClassInformation: LowerClassBoundValue is required if FrequencyClassDescriptorCode type = 'Measured Characteristic'
101. FrequencyClassInformation: UpperClassBoundValue is required if FrequencyClassDescriptorCode type = 'Measured Characteristic'
102. AttachedBinaryObject: BinaryObjectFileName is required if Result: AttachedBinaryObject is present.

103. AttachedBinaryObject: BinaryObjectFileTypeCode is required if Result: AttachedBinaryObject is present.

104. ResultAnalyticalMethod: MethodIdentifier is required if ResultAnalyticalMethod block is reported. Domain Values: This field will be validated against a domain value list only if the MethodIdentifierContext element (06.03.02) is set to one of a predefined list of contexts (e.g. USEPA, ASTM, USDOI/USGS, etc.).
105. ResultAnalyticalMethod: MethodIdentifierContext is required if ResultAnalyticalMethod block is reported. Domain Values: This field will be validated against a domain value list only if the MethodIdentifierContext element (06.03.02) is set to one of a predefined list of contexts (e.g. USEPA, ASTM, USDOI/USGS, etc.).

106. ResultAnalyticalMethod: MethodName is required only if Method Identifier and Method Identifier Context are not from WQX Domain Value list (i.e. user-defined method)
107. ResultDetectionQuantitationLimit: DetectionQuantitiationLimitTypeName is required when ResultDetectionConditionText is either *Not Detected" "Present Above Quantification Limit" or "Present and Below Quantification Limit";
108. DetectionQuantitationLimitMeasure: MeasureValue is required when ResultDetectionConditionText is either *Not Detected" "Present Above Quantification Limit" or "Present and Below Quantification Limit"; Also required when DetectionQuantitationLimitMeasure block is reported.
109. DetectionQuantitationLimitMeasure: MeasureUnitCode is required when ResultDetectionConditionText is either *Not Detected" "Present Above Quantification Limit" or "Present and Below Quantification Limit"; Also required when DetectionQuantitationLimitMeasure block is reported.
110. ActivityGroup: ActivityGroupIdentifier is required.

111. ActivityGroup: ActivityGroupTypeCode domain list value is required.

112. ActivityGroup: ActivityIdentifier is required. May have 2 to many occurances for each Activity Group block. This ActivityIdentifier needs to correspond to either an ActivityIdentifier reported in the Activity block of this submission or previously submitted to the system.
113. SWE CompositePhenomenon: Dimension is required.

114. CompositePhenomenon: ID is required.

115. CompositePhenomenon: Name is required. Use a comma separated list if more than one. Example: Wind speed, wind direction
116. CompositePhenomenon: Compenent:xlink:href is required.

117. ElementCount: Value is required if any part of the ElementCount block is entered.
118. ElementType: Name is required if any part of the ElementType block is entered.
119. DataRecord: Field is required if any part of the DataRecord block is entered.
120. DataRecord: Time definition is required if any part of the DataRecord block is entered.

121. DataRecord: Quantity definition is required if any part of the DaraRecord block is entered.

122. DataRecord: UOM is required if not implicit in the field name (for instance, not needed for Time),

123. Encoding: BlockSeparator required if any part of the Encoding block is entered.

124. Encoding: DecimalSeparator required if any part of the Encoding block is entered.

125. Encoding: TokenSeparator required if any part of the Encoding block is entered.

126. Values: Values required if any part of the Values block is entered.

Fault Follow-up Actions: Users are notified by email when a submission fails, with an indication of what element failed. They are advised to fix the errors, validate XML and resubmit.

3.6 Additional Flow Tools and Resources

Utilizing records from the Global Change Master Directory, Partner/Organization specific files were developed for the NeCODP participating partners. The files are specific to a single partner and are based on values harvested from the GCMD and Data Exchange Template initial mapping. This was done to give the partners a starting point for developing their XML files.

Example files are also available to demonstrate using the ODPX Schema to update the ODPX Node. The files demonstrate how to add projects, monitoring locations, activities, and results to an organization and otherwise manipulate the data stored in the node.

Additionally, scripts have been developed to assist partners in automating the process of submitting data to the node. This is for partners who intend to update data on a regular basis (such as time-series hourly buoy data.

The examples and scripts can be found here:

http://odpdx.neracoos.org/odpx_schema/odpx_schema_examples
http://odpdx.neracoos.org/participate/submitting_data/scripts
4 Data Processing

4.1 Submission Processing and Feedback

Before a submission is made to the ODPX node, a Node User must register with the Network Authentication Authorization Service (NAAS) and obtain a user account. Furthermore, the Node User must be a member of the NeCODP and have a signed Trading Partner Agreement before submitting data to the node.

4.1.1 Type: Submit

XML Header Usage: At this stage of development, the ODPX Node does not utilize an XML header.
The ODPX Node behaves slightly differently from standard Exchange Network flows. Rather than users submitting to a node that then processes the submission and moves to a larger repository, such as the CDX, the ODPX Node stores submitted data for use in a data access web application.

A list of NeCODP authorized NAAS accounts is checked to verify NeCODP member status. Additionally the Node user must have an NAAS user ID. The Gulf of Maine Research Institute will assist NeCODP users in acquiring a NAAS ID. Submission to the ODPX will follow the following processing steps:

1. The NAAS authenticated NeCODP user will establish a connection to the ODPX node via node client.

2. The NeCODP partner transfers an ODPX formatted submission file to the ODPX node. This file can be transferred using a node client or with custom scripts.

3. ODPX node receives the submit request and the submission file.

4. The payload containing the submitted XML file is validated against the ODPX schema. Validation is done against the schema and domain lists. The validation includes checks against maximum file field lengths, required fields, and number of occurrences for example.

5. The Submit method is called to submit an ODPX file for processing.
a. Single, multiple or zip files can be submitted to the node.

b. A Transaction ID is returned and indicates whether or not the file transfer was successful.

6. The ODPX node processes the submitted file (i.e. inserts into database, updates or deletes as indicated in the file) and loads any attached binary objects.

7. The ODPX node calls the notify process to update the submission status and return a processing report to the user.

a. If the file is processed without errors, the status is set to “Completed”

b. If errors are encountered, the status is set to “Failed”.

i. An email will be sent if errors are detected when the file is processed by the node. The file will stop being processed at the first error, so it’s possible to have repeat failed submissions until all errors are fixed. Validating in an XML editor against the schema is HIGHLY recommended before submitting file.
4.1.1.1 Additional Rules for Updating Existing Entries and Deleting Records

Updating/Replacing Entries

The ODPX is modeled after the WQX, basing many of the elements and processes on the WQX methods. A similar hierarchy was followed using Organization as the root component. Each submission must contain one and only one Organization, uniquely identified with an OrganizationIdentifier value.

Other components of the schema with unique identifier include: Project, Monitoring Location, GCMD Entries, Activity and Activity Group. Results are not uniquely identified; they are considered children of Activities.

The ODPX node will determine if the submitted file is to be Inserted or Updated in the database based on the unique identifiers. When a file is uploaded, the unique identifier for Organization, Projects, GCMD Entries, Monitoring Location, Activity, Results and Activity group is compared to the database. If no match is found, an “Insert” is performed and the record is added to the database. If an identifier is found, an “Update” is preformed, replacing the record in the database with the new file.

Files containing only updates for primary components can be submitted, and will be matched on unique identifier for each component. The new file will be compared to the database, and matching unique identifiers will replace existing data entries with the newly uploaded data for the entire section. Data is not merged but replaced.
Special consideration for child elements:

· Uploading a new Activity record that has no results will replace the existing Activity record, but will leave the Results intact.
· Uploading a new Activity which has results will replace the Activity record and the Results.
Special consideration for Time Series Results:

· When adding Time series results to an existing Activity, data will be de-duped based on any fields which are not observed properties (these include time, depth, lat and lon). De-duping means if a new entry has the same values for the fields listed above, then it will replace the existing reading.
· For example if a reading is at 20 feet and has a time of 2010-12-21 23:00:00 and there is an existing reading already for 20 feet at the same time it will replace that reading.
Deleting Entries

To Selectively remove data from the node you may submit Delete Schema files. Please contact the node administrator to discuss their use first. Organization deletes will remove ALL DATA for that organization. Information on deleting individual components is listed below.
Remove A single Organization (and all of its data)
<?xml version="1.0" encoding="UTF-8"?>
<ODPXDelete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/0/ODPX_ODPX_Delete_v1.0.xsd"
 xmlns="http://www.gomoos.org/schema/odpx/1"
 xmlns:odpx="http://www.gomoos.org/schema/odpx/1"
 schemaVersion="1.0">

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 http://www.gomoos.org/schema/odpx/1/index.xsd" -->

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/index.xsd" -->
 <ParentOrganizationIdentifier>NExxx</ParentOrganizationIdentifier>
 <OrganizationDelete>NExxx</OrganizationDelete>
</ODPXDelete>
Remove A Single Project
<?xml version="1.0" encoding="UTF-8"?>
<ODPXDelete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/0/ODPX_ODPX_Delete_v1.0.xsd"
 xmlns="http://www.gomoos.org/schema/odpx/1"
 xmlns:odpx="http://www.gomoos.org/schema/odpx/1"
 schemaVersion="1.0">

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 http://www.gomoos.org/schema/odpx/1/index.xsd" -->

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/index.xsd" -->
 <ParentOrganizationIdentifier>NERACOOS</ParentOrganizationIdentifier>
 <ProjectDelete>NERACOOS_buoys</ProjectDelete>
</ODPXDelete>
Remove a Single MonitoringLocation
<?xml version="1.0" encoding="UTF-8"?>
<ODPXDelete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/0/ODPX_ODPX_Delete_v1.0.xsd"
 xmlns="http://www.gomoos.org/schema/odpx/1"
 xmlns:odpx="http://www.gomoos.org/schema/odpx/1"
 schemaVersion="1.0">

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 http://www.gomoos.org/schema/odpx/1/index.xsd" -->

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/index.xsd" -->

<ParentOrganizationIdentifier>GoMOOS_TEST2</ParentOrganizationIdentifier>
 <MonitoringLocationDelete>A01</MonitoringLocationDelete>
</ODPXDelete>
REMOVE a Single Activity and all child results
<?xml version="1.0" encoding="UTF-8"?>
<ODPXDelete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/0/ODPX_ODPX_Delete_v1.0.xsd"
 xmlns="http://www.gomoos.org/schema/odpx/1"
 xmlns:odpx="http://www.gomoos.org/schema/odpx/1"
 schemaVersion="1.0">

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 http://www.gomoos.org/schema/odpx/1/index.xsd" -->

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/index.xsd" -->

<ParentOrganizationIdentifier>GoMOOS_TEST2</ParentOrganizationIdentifier>
 <ActivityDelete>MABI</ActivityDelete>
</ODPXDelete>
To remove all of a "tier" replace the single item in any of the above with "removetier"
<?xml version="1.0" encoding="UTF-8"?>
<ODPXDelete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/0/ODPX_ODPX_Delete_v1.0.xsd"
 xmlns="http://www.gomoos.org/schema/odpx/1"
 xmlns:odpx="http://www.gomoos.org/schema/odpx/1"
 schemaVersion="1.0">

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 http://www.gomoos.org/schema/odpx/1/index.xsd" -->

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/index.xsd" -->

<ParentOrganizationIdentifier>TuftsUniversity</ParentOrganizationIdentifier>
 <ActivityDelete>removetier</ActivityDelete>
</ODPXDelete>
Remove a GCMD Entry
<?xml version="1.0" encoding="UTF-8"?>
<ODPXDelete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/index.xsd"
 xmlns="http://www.gomoos.org/schema/odpx/1"
 xmlns:odpx="http://www.gomoos.org/schema/odpx/1"
 schemaVersion="1.0">

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 http://www.gomoos.org/schema/odpx/1/index.xsd" -->

<!-- xsi:schemaLocation="http://www.gomoos.org/schema/odpx/1 odpx/1/index.xsd" -->

<ParentOrganizationIdentifier>GoMOOS_TEST</ParentOrganizationIdentifier>

<ParentProjectIdentifier>GoMOOS_Buoys new project</ParentProjectIdentifier>
 <GCMDEntryIDDelete>GoMOOS_Buoys new project</GCMDEntryIDDelete>
</ODPXDelete>

4.1.1.2 Schematic: Node Submission via Node Client

[image: image2.jpg]XML Generation
tools (ex. Excel)

1 <
i
i ODPDX
P[a)n:ler —>| XML file Node
ata

Create XML
file from
Partner Data

Submit File
to Node

Partner

This schematic demonstrates the manual data submission using a node client.

4.1.1.3 Schematic: Node Submission via Automated Script

[image: image3.jpg]Automated Submission

Submit Software Process 2
Partner document(s) - —y
Database to Node

I_‘_l NAAS
Authentication

Data Submission

\
v gl B £

Software Process 1

—» Query

Data
Retrieved
from
Database

Status
XML

Monitor
Status
transformatiion

N\ Email
Have Result
).(ML »-| Submission
File(s)

Document(s)

=

4.1.2 Node to Node

Using the technology of XML and Web Services, NH DES implemented a scheduled Dataflow for a specific day and time within the NH DES Node Scheduler. An XML file is created at DES and written to a network folder. The Node scheduler picks up that XML file and sends it to the ODPX node’s defined endpoint on the specified scheduled day/time.
The ODPX node’s endpoint receives the request and validates the incoming endpoint and users NAAS credentials and then upon successful validation processes the incoming file. If validation is successful the data is then placed into the ODPX node database and a message is returned to the DES node and status is updated to complete.
Used 1.1 instead of 2.0 because 2.0 wasn’t working. It was a .NET to Java.
5 Data Publishing

The ODPX Node is using OpenNode2 software. Several problems were encountered in utilizing the query/solicit mechanisms available through the software for accessing the data and were not resolved by the completion of the project. This Node and Flow is still under development for an FY 09 Exchange Network project, and we intend to further investigate and resolve this issue.

One of the major deliverables in this project was to develop and launch a spatially referenced web application where users can discover, access and download data sets available through the ODPX Node.

5.1 Query and Retrieval of Data

The ODPX Data Discovery and Access Portal is located at the following URL: http://odpdx.neracoos.org
There are two mechanisms for query and retrieval of data from the portal:

1. Mapping Interface

2. Text Query
5.1.1 Data Discovery and Download Mapping Interface

Type: Query, Download

The mapping interface consists of a Google map implementation that displays available data from the NeCODP Exchange Network node. The user will be able to interact with the map by filtering on organization, data type, region and parameter.

Basic functionality:

1) The map will display a point on the map for each monitoring location that exists in the ODPX node, ordered by organization.

2) User can zoom in on a point, or filter map by organization.

3) Clicking a point on the map will display metadata specific to the organization and project as well as a table of the activities for that location.

4) Users can view details about the activities and download results in ODPX XML or .csv format

5.1.2 Data Discovery and Download Query Page

Type: Query, Download

A second tool for discovery will be a query screen for users to select parameters of interest to generate activities and results that can be downloaded in XML or .csv format.

Basic functionality:

· The user will input spatial, temporal (date range), organizational or characteristic name values.

· The user can additionally filter the search by selecting organization, monitoring location type, characteristic name or sample type.

· The user can download activities and results from here.

· Additionally, the user can map monitoring locations on Google Map.
· The map will then be populated with monitoring locations that match the user-selected values.

· The map will have the same functionality described above.

· Clicking a point on the map will generate a table of the activities for that location.

· User can download activities and results.

6 Schema Information

6.1 Schema Structure

See Appendix B for a diagram of the schema structure.

7 Appendix A – Implementation Checklist

This section summarizes the steps involved in submitting data to the ODPX Node.

7.1 Join the NeCODP

Participants must be members of the Northeast and Coastal Ocean Data Partnership to participate in this exchange. Information on joining the partnership and signing a memorandum of understanding can be found here: http://www.necodp.org/join-partnership/index_html
7.2 Get a NAAS Account

NeCODP partners can request a NAAS account from the GMRI Node Manager. This Exchange Network authorized account is what the ODPX Node uses to verify you as a user.

7.3 Download and Install Node Client

The partners will download a free and simple to use NodeClientLite2 application, developed by Windsor Solutions, to submit files to the GMRI node. Once loaded, the partners will configure the settings so that they can communicate with and submit to the NeCODP server node.

A tutorial for downloading and installing the node client software and getting connected to the NeCODP server node was created.

http://odpdx.neracoos.org/participate/submitting_data/node_client
7.4 Map Data to the ODPX XML Schema

The NeCODP partners working on this Exchange Network project have developed a data exchange template (DET) and schema for exchanging environmental monitoring data. Example files were developed to help partners map their data to the schema.
Partners can generate ODPX compliant XML files using the DET and example files as guidelines:

· Data Exchange Template - http://odpdx.neracoos.org/odpx_schema/data_exchange_template
· ODPX Schema - http://odpdx.neracoos.org/odpx_schema
· ODPX Example Files and Sample Code - http://odpdx.neracoos.org/odpx_schema/odpx_schema_examples
7.5 Generate XML File of Data

The Exchange Network utilizes the eXtensible Markup Language (XML) for transmitting data through the network. Partners need to have a machine or process capable of generating XML files in order to submit to the node. The example files listed above will help provide guidance in mapping and developing an ODPX XML file. It may be easier to configure some of the organizational and monitoring location information manually for the initial submission, while the data that changes more frequently could potentially be automated with scripts. If additional guidance for this step is needed, please contact Ian Ogilvie (ian@gomoos.org) for assistance in generating XML files.

1) Query internal database or data source and format the output into ODPX XML

2) Configure the resulting XML to match the ODPX schema

3) Run test XML files through a validation tool to identify whether the XML file conforms to the XML schema.

7.6 Validate XML Document

Prior to transmitting an XML to the ODPX Node, validation is strongly recommended. This can be done using a third party XML validation tool (e.g. Oxygen XML Editor, XML Spy, etc). The validation tool must validate that the XML document is both well-formed and validates against the ODPX schema specifications.

7.7 Submit XML File(s) to ODPX Node

Once an ODPX compliant XML file has been generated, it can be submitted to the ODPX Node. Most partners are using the NodeClientLite2 application. The NodeClientLite2 tutorial will provide information on how to submit a file to the node.

NodeClientLite2 Tutorial - http://odpdx.neracoos.org/participate/submitting_data/node_client
Multiple XML files can also be submitted with a single submission using NodeClientLite2.

Submitting multiple files with a single submission - http://odpdx.neracoos.org/participate/submitting_data/multiple_files
Partners can also elect to use scripts for creating and submitting ODPX XML to the node. GMRI has developed scripts and examples for using custom perl scripts. Information on using and modifying the scripts can be found here: http://odpdx.neracoos.org/participate/submitting_data/scripts
Appendix B – Schema Structure

[image: image4.jpg]‘ODPX Flow Configuration Document
T
Okniaoormai onitoringLocationldentity
R T (onitoringLocationTypeName *
SincsionConac & MonitoringlocationStartDate.
e o G+ e g MonitoringLocationEndDate
Lo, A TypeCork MonitoringLocationGeospatial
Lastame ActivitTypeCode * foniring.
o e e Horizontal AccuracyMeasure
TekphoneNumberTise st Tt s e
e e B HorizontalCollectionMethodName *
Sl Timze - TemporalResolution ~ +
i fliie spres MonitoringLocationWaterDepth
LocelityName ActivityRelativeDepthName: ek fhu o
SwieCode =+ ActivityDepthHeightMeasure i
— e b ttachedBinaryObject
¥ ActivityBottomDepthHeightMeasure A g:hmhk et
e /Cud Mot BinaryObjectFile TypeCode **
Depidonsines BinaryObjecHleLocation
e Projectldentifier
Lt ActivityConduetingOrganizationTest —
Lol MonitoringLocationldentifier **
Froeadbae ActityCommentText ey
B ActivityDescriptionOnly el en
b i haracerisitcName ** * RésultAnyData
\Nmbh o R)k\uh):\mpld ‘ractionText ** * l.lecn:(v()unr
Colcinfrmaion ResultMeasureValue ** ElemanType
G st MeasureUnitCode ** * Name
oV St MeasureQualifierCode * DataRecord
oo SompliComponcoiPac RevaiSataldentificr Rddw
"y o StatisticalBaseCode * T defnion =+
o Rt ResultValueTypeName *+ * Qi detinion
Phadlaine Measure Value = iy
"Bkt b BiasValue: BlockSeparator "
T Nermetmic ConfidencelorervalValue DecimalSeparsor
N e UpperConfidenceLimitValue TokenScparator
e Py ey LowerConfidenceLimitValue Values.
e orcumy ResultCommentText Values *+
Sk Voot MeasureUnitCode
B TS ResultDepthAltitudeReferencePointText
Smechac T B v BiologicalResultDescription
e Mo Var BiologicallntentName ** *
o Wi totsog Biologicallndividualldentific
v G SubjeetTasonomicName * *
et ool UnidentifiedSpeciesldentifier
S i GroupSummaryCouneWeight
i CarrentDirection “u;:mdmm 1
T MoV MeasureUnitCode ** *
Ao oo idario FrequencyClassification
et S FrequencyClassDescriptorCode **
B omapitin, FrequencyClassDescriptorUnitCode **
e oo LowerClassBoundValue **
iy SampleDescription D TS
il SampleCollecdonMethod e
- et MethodDescriptionText ** 5 DL Ol
o SampleCollectionEquipmentName BuayObeetime =,
e brmEisned BinaryObjectFileLocaton
i e ed ResultAnalyticalMethod
e Methodldentifier ** R e
v MethodldentifierContext ** Gy
o i MethodName ** Vethodidenie
o s MethodQualifierTypeName b
e e ResultDetectionQuantiationLimit
it : oo e DetectionQuantitationLimitTypeName ** *
Sl o immiou i o DetectionQuantitationLimitMeasare
R ChemicalPreservativel mﬁwrmv \‘luwu\mm it
gl ‘ThermalPreservativeUsedName NesueValic s |
D Sample TransportStorageDescription
i ActivityAttachedBinaryObject
e BinaryObjecloName =
oy BinaryObjectFile TypeCode *+
. ODPX Schema Model
S o s
ReeeiConssinn + insert/upd
BiOnaT o ctivigGroug * Constrained by a list of domain values
e ActivityGroupTypeCode * - from NJ Catalog Schema
Dk il Activityldentifier 4~ from GCMD
[~ - from ODP

ODPX

Flow Configuration Document

Version: 1.0

Original Date: July 30, 2010

Prepared for: �U.S. Environmental Protection Agency�Office of Environmental Information

1200 Pennsylvania Avenue, NW

Washington, DC 20460�

Prepared by:

The Gulf of Maine Research Institute�350 Commercial Street�Portland, ME 04101

Submitter�(Node, Node Client)

Authenticate to NAAS.�

Submit file to the ODPX.�

Get status from ODPX.

ODPX

 Archive Production File

Validate XML

Schema Validation

Set status= Pending or

Set status to Failed

Parse file into ODPX database

Archive Feedback.

Send notification email to submitter

Authenticate

Get Status

Notify

Submit

PAGE
14

