[image: image14.png]efault="unqu

v3_0.xsd

Point
d:document
Available:htt,
C ition>
documenta
input forma
xsd:documentat
users 1:dc
i:docu

Agency
0" encoding

>Application: Varies by
tatic
Developed By: Environmei
.
:

pa.gov/ex
qualified"” att

cation="EN

Environmental Information

e e
nentation> ¥ &

sn>Current Version 3

//wwwﬁ exchan e K < e ange

-Descri v 3 J i etwork

J.qp‘ ument
- Application: Varies by
- tation

Table of Contents
41
Introduction

41.1
Background

51.2
How to Use This FCD

51.3
Definitions, Acronyms and Abbreviations

82
Component Alignment and Change History

82.1
Flow Component Version History

92.2
Flow Component Versions Currently Supported

103
Flow Summary Information

103.1
GetBasicPermitInfo Data Flow

113.1.1
Flow Access and Security

113.1.2
Flow Orchestration

143.2
GetScheduledDMRsByDate Data Flow

143.2.1
Flow Access and Security

143.2.2
Flow Orchestration

143.3
GetScheduledDMRsByDMR Data Flow

153.3.1
Flow Access and Security

153.3.2
Flow Orchestration

153.4
Error Message Data Flow

163.4.1
Flow Access and Security

163.4.2
Flow Orchestration

174
Data Service Information

174.1
NetDMR.GetBasicPermitInfo_v1.0

184.1.1
Service Requirements

194.1.2
Parameter Descriptions

194.1.3
Result Documents

204.1.4
Transaction Status

204.1.5
Service Access and Security

204.1.6
Use Case Scenarios

224.2
NetDMR.GetScheduledDMRsByDate_v1.0

224.2.1
Service Requirements

244.2.2
Parameter Descriptions

244.2.3
Result Documents

254.2.4
Transaction Status

254.2.5
Service Access and Security

254.2.6
Use Case Scenarios

274.3
NetDMR.GetScheduledDMRsByDMR_v1.0

284.3.1
Service Requirements

294.3.2
Parameter Descriptions

294.3.3
Result Documents

304.3.4
Transaction Status

304.3.5
Service Access and Security

304.3.6
Use Case Scenarios

324.4
ICIS-NPDES Batch Flow Submit

324.4.1
Service Requirements

334.4.2
Parameter Descriptions

334.4.3
Result Documents

344.4.4
Transaction Status

344.4.5
Service Access and Security

344.4.6
Use Case Scenarios

364.5
Authenticate

374.6
GetStatus

374.7
Download

395
Schema Information

395.1
GetBasicPermitInfoParams Schema

415.1.1
Main Schema Components

415.1.2
Examples

425.2
GetBasicPermitInfo Message Schema

445.2.1
Main Schema Components

445.2.2
Examples

455.3
GetScheduledDMRsByDateParams Schema

475.3.1
Main Schema Components

475.3.2
Examples

485.4
GetScheduledDMRsByDMRParams Schema

505.4.1
Main Schema Components

505.4.2
Examples

505.5
GetScheduledDMRsByX Message Schema

525.5.1
Main Schema Components

565.5.2
Examples

575.6
Error Message Data Flow Schema

595.6.1
Main Schema Components

625.6.2
Examples

1 Introduction

This section provides background information on why the data flow outlined in this document is needed and how this document should be used.
1.1 Background

The Environmental Council of States (ECOS), the Texas Commission on Environmental Quality (TCEQ), 12 states, and the Environmental Protection Agency’s (EPA) Office of Environmental Information (OEI) and Office of Enforcement and Compliance Assurance (OECA) are partnering under an EPA Challenge Grant to design, develop, and demonstrate NetDMR. NetDMR is a web-based application that will allow National Pollutant Discharge Elimination System (NPDES) permittees to submit electronic discharge monitoring reports (eDMRs) to EPA’s data system for water, the Integrated Compliance Information System National Pollutant Discharge Elimination System (ICIS-NPDES), or another NPDES application, such as a state eDMR system. NPDES permits are issued under the authority of the Clean Water Act (CWA) and include specific monitoring requirements for discharges from an organization into a water body of the United States. Monitoring results must be reported on a recurring basis, typically monthly. A Regulatory Authority (RA) is the entity responsible for administering a NPDES permit. Examples of Regulatory Authorities include a State environmental protection agency, an EPA Region, or EPA headquarters.
NetDMR is intended to provide Regulatory Authorities and permittees an alternative to the paper DMR submission process. NetDMR will provide permittees with a web interface to access and view scheduled DMRs, enter and quality assure DMR data, and sign and submit DMRs via a data flow through the National Environmental Information Exchange Network (Exchange Network). NetDMR may be installed in multiple locations, and each installation may be associated with one or more RAs.
NetDMR requires web services connections using the Exchange Network infrastructure to retrieve information and submit completed DMRs to a NPDES application. These web services provide data to NetDMR using Simple Object Access Protocol (SOAP) via an Exchange Network 1.1 compliant Node. The services required fall in to four categories:
· Basic Permit Data,
· Empty Slot Data,
· DMR Data, and
· Error Message Data.
The Basic Permit category includes data flows for retrieving general information about permits. NetDMR uses this information to determine the permits for which a NetDMR user can request access. The Empty Slot category includes all the information necessary to generate a DMR form including the parameters and limit values. NetDMR uses this information to present users with a DMR web form. The DMR Data category provides permittee-submitted DMR data to the NPDES application (e.g., ICIS-NPDES), and a response to NetDMR from the NPDES application. This response will be a list of errors for the submission as defined by the Error Message category.
This FCD provides guidance to implement an XML/web-service based model for retrieving the information for the Basic Permit, Empty Slot, and Error Message categories. It defines the interface between a Service Provider that implements the data flows outlined in this document, and an end user that is calling the services (Service User). A Service Provider is an Exchange Network 1.1 compliant Node (e.g., CDX) that implements the data flows. A Service User is any user capable of calling the web services, including Network clients such as NetDMR, use of generic Network Client applications, and other Nodes. A state with its own eDMR system may wish to use the defined services to retrieve categories of information from ICIS-NPDES.

The FCD defined by the Batch IPT will cover the DMR Data category.
1.1 How to Use This FCD

This FCD defines the interface for retrieving basic permit, empty slot, and error message information. The document should be used by both Service Providers (e.g., CDX) and Service Users (e.g., NetDMR) to understand the functionality provided by the specified data flows.

Service Providers should use this document to understand which services they must make available to Service Users, the acceptable inputs and outputs to these services, possible errors, and the format of the response to these services. If a Service Provider provides the data flow defined in this FCD, it must implement all services specified in this FCD for that data flow.
Service Users should use this document to understand the functionality that is provided by Service Providers. The FCD contains the sequence of services that the user would call to retrieve the requested information and various use cases depicting scenarios that may be encountered.
Definitions, Acronyms and Abbreviations
	Table 1-1. Definitions, Acronyms, and Abbreviations

	Acronym
	Description and Notes

	Agency Map
	Defines how to determine the permits associated with a Regulatory Authority in ICIS-NPDES. An Agency Map includes the two character permitId prefix and a list of associated Agency Type Codes.

	Batch IPT
	An IPT that is defining the mechanism to submit data to a NDPES application. The IPT is focusing on ICIS-NPDES.

	BPDF
	Basic Permit Data Flow

	CDX
	Central Data Exchange - http://www.epa.gov/cdx/

	CWA
	Clean Water Act

	DET
	Data Exchange Template

	DMR
	· Discharge Monitoring Report

· Required under the Clean Water Act, used by permittees to report pollutant concentrations or other properties for water discharged into rivers, lakes, streams, and other water bodies as specified in a NPDES permit.

	ECOS
	Environmental Council of States

http://www.ecos.org

	eDMR
	Electronic DMR

	EPA
	U.S. Environmental Protection Agency

http://www.epa.gov

	EMDF
	Error Message Data Flow

	ESDF
	Empty Slot Data Flow

	Exchange Network
	National Environmental Information Exchange Network

http://www.epa.gov/exchangenetwork/index.html
http://exchangenetwork.net/

	FCD
	Flow Configuration Document

	ICIS
	Integrated Compliance Information System

http://www.epa.gov/compliance/data/systems/modernization/index.html
ICIS, a Web-based system, enables individuals from states and EPA to access integrated enforcement, compliance, and NPDES data from any desktop connected to the Internet. The public can access some ICIS data through ECHO.

	ICIS-NPDES
	Integrated Compliance Information System - National Pollutant Discharge Elimination System

http://www.epa.gov/compliance/data/systems/index.html

	NAAS
	Network Authentication and Authorization Services

	NPDES
	National Pollutant Discharge Elimination System

	Network Client
	Network Clients can submit, request, and receive results from a request on the Network. Network Clients cannot respond to data queries from other Nodes and therefore cannot publish data on the Exchange Network.

	OECA
	EPA Office of Enforcement and Compliance Assurance

http://www.epa.gov/compliance/

	OEI
	EPA Office of Environmental Information

http://www.epa.gov/oei/

	RA
	Regulatory Authority. The entity responsible for administering an NPDES permit issued under the CWA.

	Service Provider
	An Exchange Network 1.1 compliant Node (e.g., CDX or a state Node) that implements the data flows and services outlined in this FCD.

	Service User
	A user of the data flows and services outlined in this FCD. A Service User calls the services provided by a Service Provider. A Service User can be an installation of NetDMR, a Network Client, an Exchange Network 1.1 compliant Node, or any other application that can call the Web services provided by the Service Provider.

	SCR
	Schema Conformance Report

	SOAP
	Simple Object Access Protocol

	TCEQ
	Texas Commission on Environmental Quality

	XML
	eXtensible Markup Language

2 Component Alignment and Change History

The alignment of components for the Basic Permit Data Flows (BPDF), Empty Slot Data Flow (ESDF), and Error Message Data Flow (EMDF), as well as a history of any changes are described in this section.

2.1 Flow Component Version History

Table 2-1 provides the version history of all flow components, including the FCD, schema, Data Exchange Template (DET), and Schema Conformance Report (SCR).
Table 2-1. Flow Component Version History

	Component
	Version
	Date
	Changed By
	Description of Change

	NetDMR Schema
	1.0
	10/06/08
	
	Version 1.0

	NetDMR FCD
	1.0
	10/06/08
	
	Version 1.0

	NetDMR SCR
	1.0
	10/06/08
	
	Version 1.0

Flow Component Versions Currently Supported
Table 2-2 lists the current component versions supported by this FCD.

Table 2-2. Supported Flow Component Version

	Component
	Version(s) Supported
	Explanation (optional)

	FCD
	1.0
	

	Schema
	1.0
	

	DET
	1.0
	

3 Flow Summary Information
This section outlines the data flows defined by this FCD and listed in Table 3-1. The flows are comprised of multiple web services acting in an orchestrated pattern. This section describes the orchestration of the services required for the Basic Permit, Empty Slot, and Error Message Data Flows. Section 4 provides detailed information about the individual services.

Table 3-1. Data Flows
	Data Flow Name or Description
	Flow Category
	Service Types
	Result Schema

	GetBasicPermitInfo
	Basic Permit Data Flow
	Authenticate, Solicit, GetStatus, Download
	NetDMR_Permits_v1.0.xsd

	GetScheduledDMRsByDate
	Empty Slot Data Flow
	Authenticate, Solicit, GetStatus, Download
	NetDMR_PermitsScheduledDMRs_v1.0.xsd

	GetScheduledDMRsByDMR
	Empty Slot Data Flow
	Authenticate, Solicit, GetStatus, Download
	NetDMR_PermitsScheduledDMRs_v1.0.xsd

	Error Message Data Flow
	Error Message Data Flow
	Authenticate, Submit, GetStatus, Download
	NetDMR_SubmissionResponse_v1.0.xsd

Flow Stewards and Contact Information:
Brandon Harris, Texas Commission on Environmental Quality (TCEQ)

Phone:
(512)239-4535
Email:
brandon.harris@tceq.state.tx.us
David Hindin, U.S. EPA/Office of Enforcement and Compliance Assurance

Phone:

(202)564-2280

Email:
hindin.david@epa.gov

The data flows were defined to meet the NetDMR requirements. The NetDMR project page can be found at on the Exchange Network website at:

http://www.exchangenetwork.net/exchanges/water/netdmr.htm
3.1 GetBasicPermitInfo Data Flow
Flow Name: GetBasicPermitInfo
Flow Description:
The GetBasicPermitInfo data flow retrieves a subset of the information available from a source system for one or more NPDES permits. The data flow allows for retrieval of all permits associated with a RA, or allows the RA to provide a specific list of permits to return. See Section 4.1.3 for additional detail about the information that is returned. NetDMR will use the BPDF to allow users to request read, edit, or signatory access to DMRs for specified permits. NetDMR will use the information returned by the GetBasicPermitInfo data flow to process the access request, validate that the permit is valid, and generate an Electronic Subscriber Agreement for signatory access requests.

This flow requires the orchestration of four of the nine standard Exchange Network 1.1 Services:

· Authenticate,

· Solicit (NetDMR.GetBasicPermitInfo_v1.0),

· GetStatus, and

· Download.

Each service is described in detail in Section 4. An Exchange Network Node that implements this data flow, referred to as a Service Provider (e.g. CDX), must support these Exchange Network services. A discussion of the steps necessary to implement this data flow for a particular Node is outside the scope of this FCD.

3.1.1 Flow Access and Security

The flow uses the centralized Network Authentication and Authorization Service (NAAS) for authentication and authorization. Service Users, such as a NetDMR installation or a State eDMR system, must have a NAAS account to use the services. To access the services provided by a particular Service Provider (e.g., CDX) the user must follow the standards and procedures for that Service Provider. The NAAS account used by the Service User (e.g., NetDMR) must have a policy or policies in place for the Service Provider that allow the user to use each service defined within the data flow.
NAAS allows the creation of policies that grant or deny a NAAS account access to use a particular service on a Service Provider (e.g., CDX). There are various ways in which a Service Provider can create NAAS policies to grant access to services. For example, generic policies can be created that grant a user access to all services within the Service Provider, or specific policies can be created that grant the user access to only specific services. How the Service Provider creates the policies to grant the required access (e.g., through generic or specific policies) is outside the scope of this discussion.

Each Service User (e.g., NetDMR installation) will require a unique NAAS account. The Service User will use this account to communicate with the Service Provider (e.g., CDX) and call the various services outlined in this FCD.
3.1.2 Flow Orchestration
This section outlines the orchestration of the Exchange Network services used to define this flow; additional detail for each service is provided in Section 4.
Figure 3-1 shows the relationship between the request, Service Provider (e.g., CDX), and NAAS. In some cases, such as CDX, the Service Provider may forward the request to another Node for processing. The method the Service Provider uses to process the request is outside the scope of this FCD.

Figure 3-1 Flow Orchestration

[image: image1.jpg]rvice Provider

[

Auhenticate

Security Token

Gerstatus

Autenicate

SecuryToken

Solict
 — Validate
‘Authorzation Desion
Transacionld - -
i

T-1

Transacton Status

Dowrload

Validate

e

T--1

Documents.

Valdste

iy

T

i

i

i

i

|
> Procass Soli Request

)

i

i

i

i

i

D
i

‘Auhorzation Desion

‘Auhorizatio Decision

Security tokens issued by NAAS expire 10 minutes after issuance. It is likely that the GetStatus and Download requests described in Step 4 and Step 5 will be sent more than 10 minutes after the security token was issued in Step 1; therefore the Service User will need to be issued a new security token by repeating Step 1 prior to initiating the GetStatus or Download requests. This re-authentication process is not shown in the diagram to improve readability.

Each step in Figure 3-1 is described below.

1. The Service User (e.g., NetDMR) calls the Authenticate service on the Service Provider (e.g., CDX) and supplies a NAAS username and password.

a. If authentication is successful, the Service Provider returns a securityToken to the Service User.

b. If the authentication fails, a SOAP fault message is returned.

2. The Service User makes a Solicit Request (NetDMR.GetBasicPermitInfo_v1.0) on the Service Provider (e.g., CDX), passing in the security token (from Step 1) and the appropriate parameters.

a. The Service Provider validates the security token and whether the Service User is authorized to make the request. See Section 3.1.1 for more information on authorization for this request.
i. If the security token is valid, the Service Provider generates a transactionID for the request, sets the status of the request to ‘Pending’, and returns the transactionID to the Service User.

ii. If the security token is invalid or the Service User is not authorized, the request is rejected and a SOAP fault is returned to the Service User.

3. At some point in the future, the Service Provider (e.g., CDX) processes the request according to predefined processing logic.

a. Validate the XML parameter provided in the Solicit parameters parameter is valid according to the associated XML schema. This can be performed by the Exchange Network Node (e.g., CDX) or within the implementation of the service.
i. If validation is successful, continue to Step b.
ii. If validation fails, the status of the transaction is set to ‘Failed’. An XML Validation Report can optionally be provided. CDX will perform this validation for the CDX implementation of the services, and provide an XML Validation Report.
b. If processing is successful, a result XML document, conformant to Section 5.2, is generated, the document is made available for download, and the status of the transaction is set to ‘Completed’.

c. If processing is unsuccessful, the status of the transaction is set to ‘Failed’.
4. The Service User retrieves the transaction status at regular intervals by calling the GetStatus service and passing the transactionID returned by the Service Provider in Step 2 and an issued security token. The Service Provider (e.g., CDX) validates the request and returns the status of the transaction.

5. When the transaction status returned by GetStatus is ‘Completed’ or ‘Failed’, the Service User downloads the result from the Service Provider (e.g., CDX) by calling the Download service and passing the transactionID returned by the Service Provider in Step 2 and an issued security token. The Service Provider validates the request and returns the result document(s).
Figure 3-1 describes the process where a Service User provides his or her credentials directly to a Service Provider (e.g., CDX). The Service Provider then delegates the authentication to NAAS. This is referred to as Delegated Authentication. It is also possible for a Service User to authenticate directly against NAAS, receive a security token, and provide that token to the Service Provider. For more information on direct and delegated authentication see Section 5.5.8 of the Exchange Network Protocols v1.1 (http://www.exchangenetwork.net/node/dev_toolbox/protocol.htm).

3.2 GetScheduledDMRsByDate Data Flow

Flow Name: GetScheduledDMRsByDate
Flow Description:

The GetScheduledDMRsByDate Data Flow allows a Service User (e.g., NetDMR), to obtain scheduled DMRs from a Service Provider (e.g., CDX) where the DMR Monitoring Period Start Date and Monitoring Period End Date occur within a specified range. The data flow allows a Service User to specify a set of permits through the use of Agency Maps or by explicitly listing the permit IDs. NetDMR will use this data flow to retrieve all the information required to display a blank DMR form to a NetDMR user.

This flow requires the orchestration of four of the nine standard Exchange Network 1.1 Services:

· Authenticate,

· Solicit (NetDMR.GetScheduledDMRsByDate_v1.0),

· GetStatus, and

· Download.

Each service is described in detail in Section 4. An Exchange Network Node that implements this data flow, referred to as a Service Provider (e.g., CDX), must support these Exchange Network services. A discussion of the steps necessary to implement this data flow for a particular Node is outside the scope of this FCD.

3.2.1 Flow Access and Security

The flow uses the same flow access and security as the GetBasicPermitInfo data flow. See Section 3.1.1 for more information.

3.2.2 Flow Orchestration

The orchestration of the services for this data flow is the same as the orchestration for the GetBasicPermitInfo data flow. The only difference is that the Solicit request made in Step 2 is for the NetDMR.GetScheduledDMRsByDate_v1.0 service instead of the NetDMR.GetBasicPermitInfo_v1.0 service and the result document is conformant to the schema described in Section 5.5. See Section 3.1.2 for more information.
3.3 GetScheduledDMRsByDMR Data Flow

Flow Name: GetScheduledDMRsByDMR
Flow Description:

The GetScheduledDMRsByDMR data flow allows a Service User, such as NetDMR, to obtain the information for a set of scheduled DMRs. NetDMR will use the data flow to retrieve all the information required to display a blank DMR form to a NetDMR user.

This flow requires the orchestration of four of the nine standard Exchange Network 1.1 Services:

· Authenticate,

· Solicit (NetDMR.GetScheduledDMRsByDMR_v1.0),

· GetStatus, and

· Download.

Each service is described in detail in Section 4. An Exchange Network Node that implements this data flow, referred to as a Service Provider (e.g., CDX), must support these Exchange Network services. A discussion of the steps necessary to implement this data flow for a particular Node is outside the scope of this FCD.

3.3.1 Flow Access and Security

The flow uses same flow access and security as the GetBasicPermitInfo data flow. See Section 3.1.1 for more information.

3.3.2 Flow Orchestration

The orchestration of the services for this data flow is the same as the orchestration for the GetBasicPermitInfo data flow. The only difference is that the Solicit request made in Step 2 is for the NetDMR.GetScheduledDMRsByDMR_v1.0 service instead of the NetDMR.GetBasicPermitInfo_v1.0 service and the result document is conformant to the schema described in Section 5.5. See Section 3.1.2 for more information.

3.4 Error Message Data Flow
Flow Name: Error Message Data Flow
Flow Description:

The Error Message Data Flow (EMDF) allows a Service User, such as NetDMR, to retrieve via the Exchange Network, the results of DMR submissions sent using the ICIS-NPDES Batch Flow (Batch Flow). For information on submitting documents using the Batch Flow, refer to the corresponding Batch Flow documentation (link to documentation TBD). Although the Batch Flow allows many types of submissions (e.g., Permit, DMR, Violations), the scope of the EMDF is limited to DMR-based submissions.
The EMDF requires the orchestration of four of the nine standard Exchange Network 1.1 Services:

· Authenticate,

· Submit (ICIS-NPDES Batch Flow Submit),

· GetStatus, and

· Download.

The Authenticate and GetStatus services for this data flow are described in detail in the ICIS-NPDES Batch Flow documentation. The Download service is described in detail in Section 4 of this FCD. The Submit service is defined in the ICIS-NPDES Batch flow documentation, however slight modifications are needed to fully support the EMDF. The existing service and required modifications are described in Section 4.

An Exchange Network Node that implements this data flow, referred to as a Service Provider, must support these four Exchange Network services. A discussion of the steps necessary to implement the EMDF for a particular Node is outside the scope of this FCD.

3.4.1 Flow Access and Security

Refer the the ICIS-NPDES Batch Flow documentation for information on flow access and security for the Batch Submit service (link to documentation TBD).
3.4.2 Flow Orchestration

Refer to the ICIS-NPDES Batch Flow documentation for a description of the orchestration of the services for this data flow (link to documentation TBD).
4 Data Service Information

This section lists the Exchange Network services defined in Section 3 and used by the Permit data flows and EMDF, including: GetBasicPermitInfo, GetScheduledDMRsByDate, GetScheduledDMRsByDMR, and ICIS-NPDES Submit data flows. A Node must implement all of these services to support these data flows.

Table 4-1. Data Services

	Service Name or Description
	Service Type

	NetDMR.GetBasicPermitInfo_v1.0
	Solicit

	NetDMR.GetScheduledDMRsByDate_v1.0
	Solicit

	NetDMR.GetScheduledDMRsByDMR_v1.0
	Solicit

	ICIS-NPDES Batch Flow Submit
	Submit

	Authenticate: Authenticate to the Node
	Authenticate

	GetStatus: Retrieve the current status of the Solicit operation
	GetStatus

	Download: Retrieve the results of the Solicit operation
	Download

4.1 NetDMR.GetBasicPermitInfo_v1.0

The GetBasicPermitInfo Solicit service allows a Service User (e.g., NetDMR) to request basic information for one or more permits contained in a NPDES system (e.g., ICIS-NPDES) via a Service Provider (e.g., CDX). The signature of the service is defined below and in Table 4-2. a detailed description of the Solicit service can be found in the Exchange Network Node Functional Specifications (version 1.1) at http://www.exchangenetwork.net/node/dev_toolbox/funcspec.htm.

Data Service Type: Solicit

returnURL: Not Used

Request: NetDMR.GetBasicPermitInfo_v1.0
Parameters:

Table 4-2. Data Service Parameters, Order, and Format

	Position
	Name
	Data Type
	Required?
	Max Length
	Wildcard attributes (character and behavior)
	Notes and Examples

	1
	GetBasicPermitInfoParams
	XML Document
	Yes
	N/A
	N/A
	See Section 4.1.2

4.1.1 Service Requirements

The GetBasicPermitInfo service requires the following:

· GetBasicPermitInfoParams parameter conformant with the schema specified in Section 5.1. The XML document must contains one, and only one, of the following:

· The first two characters for a permit (permit prefix) and a list of corresponding agency type codes. This is referred to as an Agency Map. Multiple Agency Maps can be provided.

· A list of PermitIDs.

· If Agency Map(s) are provided, the service must return all permits that match the specified Agency Map(s).

· If a list of permit IDs are provided, the service must return the specified permits that exist.

· If a subset of the specified permits does not exist, nothing should be returned for those permits.
· If none of the specified permits exist, an XML document that contains no permit information must be returned. See Section 4.1.6 for an applicable use case.

· If a permit has been reissued, the information for the current permit should be returned.

· The status of the transaction must be in one of three states Pending, Completed, or Failed. See Section 4.3.4 for more information.

· If an error is encountered that prevents the successful processing of the request, one of the following must occur:

· If the transactionID has not been returned to the user, a SOAP Fault code will be returned instead of a transactionID. The following faults may be returned:

· E_AccessDenied: If the NAAS account is not authorized to perform the request

· E_InvalidToken: If the token provided is invalid (e.g. was not issued by NAAS)

· E_TokenExpired: If the token is expired

· If the transactionID for the request has been returned to the user, the status of the request must be set to ‘Failed’.
· (Optional) If the transaction is set to ‘Failed’ because the GetBasicPermitInfoParams parameter does not validate against the schema, a validation report may be generated and made available for download. If a Service Provider provides such a report, it must be named ‘ValidationResults.xml’. The format of the validation report is specified by the Service Provider.
· A successful processing of the request must result in an XML instance document as defined in Section 5.2. The result document must be named according to the following naming convention “<transactionID>_Response.zip” (e.g., bddc6601-1e7c-41b9-942b-175dbba628c8_Response.zip).

· All documents made available for download must be zipped using the standard PKWare zip compression format. (http://www.pkware.com/documents/casestudies/APPNOTE.TXT).

· The documents must be retrievable via the Download service by providing the transactionID returned from the Solicit request.

· All documents that will be made available for Download must be made available either prior to or at the same time as the status of the transaction is set to ‘Failed’ or ‘Completed’.

4.1.2 Parameter Descriptions

The GetBasicPermitInfo service uses a single XML based parameter, GetBasicPermitInfoParams. GetBasicPermitInfoParams consolidates all information required for the request into a single parameter. It must be a valid XML document that conforms to the schema specified in Section 5.1.

4.1.3 Result Documents

The GetBasicPermitInfo service will generate one of three results depending on whether the service request is valid, whether a transactionID has already been returned, and whether a valid request completed successfully.

Invalid Request

If it is determined that the request is invalid and the transactionID has not been returned, a SOAP fault will be returned instead of a transactionID. See Section 4.1.1 Service Requirements for more details on which SOAP faults would be returned under various scenarios. By returning the SOAP fault the transaction is effectively terminated. Calls to subsequent services such as GetStatus and Download are not applicable.

If it is determined that the request is invalid after the transactionID has been returned, the status of the transaction must be set to ‘Failed’. A Service Provider may optionally provide a ValidationResults.xml document if the GetBasisPermitInfoParams does not conform to the associated schema. The Service User (e.g., NetDMR) is responsible for determining how to proceed after a failed transaction.

Failed Processing of Valid Request

If a valid request cannot be successfully processed (e.g. – ICIS-NPDES database connection fails), the status of the transaction must be set to ‘Failed’. An error report is optional. The EPA implementation of this service will not provide an error report in this case. The Service User (e.g., NetDMR) is responsible for determining how to proceed after a failed request.

Successful Processing of Valid Request

If a valid request is successfully processed, an XML instance document conformant with Section 5.2 will be returned. The document must be named according to the following convention

<TransactionID> + “_Response.xml” (e.g., bddc6601-1e7c-41b9-942b-75dbba628c8_Response.xml). As specified in the requirements, this document must be made available as a zipped file. The zipped file should be named the same as the XML file, except with a .zip extension instead of the .xml extension.
4.1.4 Transaction Status

The status of the Solicit request can be tracked using the GetStatus service. The request must be in one of the following status states:

1. Pending – The Service Provider (e.g., CDX) has received the request. A transactionID has been generated and returned to the user.

2. Completed – The request has been completed successfully (no errors) and the result document is available for Download.

3. Failed – The request failed. An error report may or may not be downloadable depending on the Service Provider.
4.1.5 Service Access and Security

See Section 3.1.1 for general information on how security will be implemented for the data flow and service.

4.1.6 Use Case Scenarios

This section provides example use cases for the GetBasicPermitInfo service and the results that should be returned. Both valid and invalid use cases are described. The use cases provide examples of each type of result that could occur, and are not an exhaustive list of all the permutations of request parameters.
Valid Use Cases

Each use case below outlines scenarios in which valid parameters are provided to the service. Assume the following for all scenarios:

· The user has successfully authenticated using the Authenticate service and has a valid security token.

· The NAAS account used in the Authenticate service call is authorized to call the service.

· A valid GetBasicPermitInfoParams parameter is provided as specified in Section 4.1.2 and Section 5.1.
For each scenario an XML instance document is created that conforms to the schema specified in Section 5.2.

1. Service User provides at least one Agency Map element. At least one permit exists for the AgencyMap.
a. Return all permits that match the Agency Map.

2. Service User provides a list of permitIDs. All the specified permits exist in ICIS-NPDES.
a. Return all specified permits.

3. Service User provides a list of permitIDs. At least one of the specified permitIDs does not exist in ICIS-NPDES.

a. Return all the specified permits that exist within ICIS-NPDES. Do not return anything for the permits that are not found.
4. No permits match the specified criteria

a. Return an XML instance document that does not contain any Permit elements. See the sample XML instance document Example_GetBasicPermitInfo_Result_Empty.xml

Error Use Cases

Each use case below outlines scenarios for which the GetBasicPermitInfo service should generate an error. These use cases assume the user already has a security token, though not necessarily a valid one.

1. User provides an invalid security token (e.g., not a NAAS token):

a. Return an E_InvalidToken SOAP fault

2. User provides a NAAS security token that has expired:

a. Return an E_TokenExpired SOAP fault

3. User does not provide a valid GetBasicInfoParams parameter (e.g., does not provide an AgencyMap or a list of permitIDs):

a. Set the status of the transaction to ‘Failed’.

b. (Optional) Provide a ValidationReport.xml document for download

4. User provides a valid GetBasicInfoParams parameter, but after the request has been accepted (transaction status set to ‘Pending’) and the transactionID returned, an error that prevents the request from being completed is encountered. For example, an unrecoverable exception was thrown by the ICIS-NPDES Node while processing the request (e.g., database connection fails):

a. Set the status of the transaction to ‘Failed’.

CDX-Specific Error Use Cases

While these use cases are specific to the CDX environment, similar use cases apply to any Service Provider that forwards the request to another Node.

1. The ICIS-NPDES Node is not available when CDX first attempts to forward the request.

a. While not required by this FCD, it is recommended that CDX periodically retry forwarding the request over the course of a 24 hour period. If the forward does not complete successfully after 24 hours, CDX should set the transaction to ‘Failed’.

b. If CDX does not support retrying the forward to the ICIS-NPDES Node, it must set the transaction to ‘Failed’.

2. The CDX Node is not available when ICIS-NPDES attempts to Notify or Submit the results of the request to the CDX Node. If the ICIS-NPDES Node does not retry the Notify and/or Submit request, the transaction will stay in a ‘Pending’ state indefinitely on the CDX Node unless the CDX Node automatically sets the transaction to the ‘Failed’ status after a specified period of time.

a. While not required by this FCD, the ICIS-NPDES Node should accommodate periods when the CDX Node is not available and retry the requests on CDX for a specified amount of time.

b. While not required by this FCD, coordination between CDX and ICIS-NPDES Node should occur such that a defined trigger or process will prevent a transaction from staying in the ‘Pending’ status indefinitely.
The approach taken by CDX and the ICIS-NPDES Node for handling the other’s unavailability should be documented. This documentation is outside the scope of this FCD.

4.2 NetDMR.GetScheduledDMRsByDate_v1.0
This service allows a Service User (e.g., NetDMR) to obtain from a Service Provider (e.g., CDX) the scheduled DMRs for specified permit(s) and whose Monitoring Period Start Date (MPSD) and/or Monitoring Period End Date (MPED) fall within the specified range. The data flow allows a Service User to retrieve permit and scheduled DMR information for all permits associated with an Agency Map, or allows the Service User to specify a list of permits for which the information should be returned. The signature of the service is defined below and in Table 4-2. Detailed information on the Solicit service can be found in the Exchange Network Node Functional Specifications (version 1.1) at http://www.exchangenetwork.net/node/dev_toolbox/funcspec.htm.
Data Service Type: Solicit

returnURL: Not Used

Request: NetDMR.GetScheduledDMRsByDate_v1.0
Parameters:

Table 4-2. Data Service Parameters, Order, and Format

	Position
	Name
	Data Type
	Required?
	Max Length
	Wildcard attributes (character and behavior)
	Notes and Examples

	1
	GetScheduledDMRsByDateParams
	XML Document
	Yes
	N/A
	N/A
	See Section 4.2.2

4.2.1 Service Requirements

The service requires the following:

· GetScheduledDMRsByDateParams parameter conformant with the schema specified in Section 5.3. The XML file contains the following:
· The first two characters for a permit (permit prefix) and a list of agency type codes. This is referred to as an Agency Map. Multiple Agency Maps can be provided.
· Instead of an Agency Map, a list of PermitIDs can be provided.

· An optional inclusive date range for Monitoring Period Start Dates (MPSD). Inclusive means that a range of 01/01/2006 – 01/01/2007 would include DMRs with MPSDs of 01/01/2006 and 01/01/2007.
· An optional inclusive date range for Monitoring Period End (MPED). Inclusive means that a range of 01/01/2006 – 01/01/2007 would include DMRs with MPEDs of 01/01/2006 and 01/01/2007.
· An MPSD or MPED date range must be provided. Both ranges can also be provided.

· If an Agency Map is provided, the service must return all scheduled DMRs whose monitoring period start dates and monitoring period end dates fall within the specified date ranges for each permit identified by the Agency Map(s).

· If a list of permit IDs is provided, the service must return all scheduled DMRs whose monitoring period start dates and monitoring period end dates fall within the specified date ranges for each specified permit.

· If no DMRs match the specified criteria, an empty XML document that contains no DMR information must be returned. See Section 4.2.6 for an applicable use case.

· If a subset of the specified permits does not exist, the result should only include information for the existing permits.
· The status of the transaction must be in one of three states Pending, Completed, or Failed. See Section 4.3.4 for more information.

· If an error is encountered that prevents the successful processing of the request, one of the following must occur:
· If the transactionID has not been returned to the user, a SOAP Fault code will be returned instead of a transactionID. The following faults may be returned:

· E_AccessDenied: If the NAAS account is not authorized to perform the request

· E_InvalidToken: If the token provided is invalid (e.g. was not issued by NAAS)

· E_TokenExpired: If the token is expired

· If the transactionID for the request has been returned to the user, the status of the request must be set to ‘Failed’.
· (Optional) If the transaction is set to ‘Failed’ because the GetScheduledDMRsByDateParams parameter does not validate against the schema, a validation report may be generated and made available for download. If a Service Provider provides such a report, it must be named ‘ValidationResults.xml’. The format of the validation report is specified by the Service Provider.

· A successful processing of the request must result in an XML instance document as defined in Section 5.4. The result document must be named according to the following naming convention “<transactionID>_Response.zip” (e.g., bddc6601-1e7c-41b9-942b-175dbba628c8_Response.zip).

· All result documents must be zipped using the standard PKWare zip compression format (http://www.pkware.com/documents/casestudies/APPNOTE.TXT).
· All documents must be retrievable via the Download service by providing the transactionID returned from the Solicit request.

· All documents that will be made available for Download must be made available either prior to or at the same time as the status of the transaction is set to ‘Failed’ or ‘Completed’.
The initial EPA implementation of this service does not support multiple AgencyMap elements within the request. If the EPA receives a GetScheduledDMRsByDate request that includes multiple AgencyMaps, empty slots for only the first AgencyMap will be returned. Any other AgencyMaps included in the request will be silently ignored; an error message will not be generated.
4.2.2 Parameter Descriptions
The service uses a single XML based parameter, GetScheduledDMRsByDateParams. The parameter consolidates all information required for the request in to a single parameter. It must be a valid XML document that conforms to the schema specified in Section 5.3.
To reduce the size of the result document and the overhead on the source system (e.g., ICIS-NPDES) it is highly recommended that Service Users use the available parameters to limit the number of scheduled DMRs that will be returned. For example, if DMRs are only required for a few Permits, a list of the permit IDs should be provided instead of an Agency Map. The date range parameters should be used to limit the number of DMRs that will be returned for each permit. It is recommended that a date range not exceed one year.
4.2.3 Result Documents

The service will generate one of three results depending on whether the service request is valid, whether a transactionID has been returned, and whether a valid request completed successfully.

Invalid Request

If it is determined that the request is invalid and the transactionID has not been returned, a SOAP fault will be returned instead of a transactionID. See Section 4.2.1 Service Requirements for additional detail on the SOAP faults that would be returned under various scenarios. By returning the SOAP fault the transaction is effectively terminated. If a transactionID is not provided, calls to subsequent services such as GetStatus and Download are not applicable.

If it is determined that the request is invalid after the transactionID has been returned, the status of the transaction must be set to ‘Failed’. A Service Provider may optionally provide a ValidationResults.xml document if the GetScheduledDMRsByDateParams does not conform to the associated schema. The Service User (e.g., NetDMR) is responsible for determining how to proceed after a failed transaction.

Failed Processing of Valid Request

If a valid request cannot be successfully processed, the status of the transaction must be set to ‘Failed’. An error report is optional. . The EPA implementation of this service will not provide an error report in this case. The Service User is responsible for determining how to proceed after a failed transaction.
Successful Processing of Valid Request

If a valid request is successfully processed, an XML instance document conformant with Section 5.4 will be returned. The document must be named according to the following convention

<TransactionID> + “Response.xml” (e.g., bddc6601-1e7c-41b9-942b-75dbba628c8_Response.xml). As specified in the requirements, this document should be made available as a zipped file. The zipped file should be named the same as the XML file, except with a .zip extension instead of the .xml extension.

4.2.4 Transaction Status

The status of the GetScheduledDMRsByDate Solicit request can be tracked using the GetStatus service. The request will be in one of the following status states:

1. Pending – The Service Provider (e.g., CDX) has received the request. A transactionID has been generated and returned to the user.

2. Completed – The request has been completed successfully (no errors) and the result document is available for Download.

3. Failed – The request failed.
4.2.5 Service Access and Security

See Section 3.1.1 for general information on how security will be implemented for the data flow and service.
4.2.6 Use Case Scenarios

This section provides use cases for the service and the results that should be returned. Both valid and invalid use cases are described. The use cases provide examples of each type of result that could occur, and are not an exhaustive list of all the permutations of request parameters.
Valid Use Cases

Each use case below outlines scenarios in which valid parameters are provided to the service. Assume the following for all scenarios:

· The user has successfully authenticated using the Authenticate service and has a valid security token.

· The NAAS account used in the Authenticate service call is authorized to call the service.
· A valid GetScheduledDMRsByDateParams parameter is provided as specified in Section 4.2.2 and 5.3.
For each scenario an XML instance document that conforms to the schema specified in Section 5.5 is created.
1. Service User provides one or more Agency Maps and an MPSD date range. Permits exist for the specified Agency Map(s).
a. Return all DMRs where the MPSD occurs during the specified date range and the corresponding permit matches a provided Agency Map.
2. Service User provides one or more Agency Maps and an MPED date range. Permits exist for the specified Agency Map(s).

a. Return all DMRs where the MPED occurs during the specified date range and the corresponding permit matches a provided Agency Map.

3. Service User provides one or more Agency Maps, an MPSD date range, and an MPED date range.

a. Return all the DMRs where the MPSD occurs during the specified MPSD date range (inclusive), the MPED occurs during the specified MPED date range (inclusive), and the corresponding permit matches a provided Agency Map.
4. Service User provides a list of Permit IDs and an MPSD date range. At least one of the specified permitIDs does not exist in ICIS-NPDES.

a. Ignore the missing permit. Return all the DMRs for the permits specified where the MPSD occurs during the specified date range (inclusive).

5. Service User provides a list of Permit IDs, an MPSD date range, and an MPED date range. All the specified permits exist in ICIS-NPDES.
a. Return all the DMRs for the permits specified where the MPSD occurs during the specified MPSD date range (inclusive) and the MPED occurs during the specified MPED date range (inclusive).
6. No DMRs match the specified criteria
a. Return an XML instance document that does not contain any DMR elements. See the sample XML instance document EmptyDMRs_Message_Example.xml.
Error Use Cases

Each use case below outlines scenarios for which the service should generate an error. These use cases assume the user already has a security token, though not necessary a valid one.
1. Service User provides an invalid security token (e.g., not a NAAS token):
a. Return an E_InvalidToken SOAP fault.
2. Service User provides a NAAS security token that has expired:
a. Return an E_TokenExpired SOAP fault.
3. Service User does not provide a valid GetScheduledDMRsByDate parameter per the schema specified in Section 5.3.
a. Set the status of the transaction to ‘Failed’.
b. (Optional) Provide an XML Validation Report that specifies the failure.
4. Service User provides a valid Agency Map and date range, but after the request has been accepted (transaction status set to ‘Pending’) and the transactionID returned, an error that prevents the request from being completed is encountered. For example, an unrecoverable exception was thrown by the ICIS-NPDES Node while processing the request (e.g., node down, out of memory):
a. Set the status of the transaction to ‘Failed’.

CDX-Specific Error Use Cases

While these use cases are specific to the CDX environment, similar use cases apply to any Service Provider that forwards the request to another Node.

3. The ICIS-NPDES Node is not available when CDX first attempts to forward the request.

a. While not required by this FCD, it is recommended that CDX periodically retry forwarding the request over the course of a 24 hour period. If, after 24 hours, the forward does not complete successfully, CDX should set the transaction to ‘Failed’.

b. If CDX does not support retrying the forward to the ICIS-NPDES Node, it must set the transaction to ‘Failed’.

4. The CDX Node is not available when ICIS-NPDES attempts to Notify or Submit the results of the request to the CDX Node. If the ICIS-NPDES Node does not retry the Notify and/or Submit request, the transaction will stay in a ‘Pending’ state indefinitely in the CDX Node unless the CDX Node automatically sets the transaction to the ‘Failed’ status after a specified period of time.

a. While not required by this FCD, the ICIS-NPDES Node should accommodate periods when the CDX Node is not available and retry the requests on CDX for a specified amount of time.

b. While not required by this FCD, coordination between CDX and ICIS-NPDES Node should occur such that a defined trigger or process will prevent a transaction from staying in the ‘Pending’ status indefinitely.
The approach taken by CDX and the ICIS-NPDES Node for handling the other’s unavailability should be documented. This documentation is outside the scope of this FCD.

4.3 NetDMR.GetScheduledDMRsByDMR_v1.0

This Solicit service allows a Service User (e.g., NetDMR) to obtain from a Service Provider (e.g., CDX) the information for a specified set of scheduled DMRs. The signature of the service is defined below and in Table 4-2. A detailed description of the Solicit service can be found in the Exchange Network Node Functional Specifications (version 1.1) at http://www.exchangenetwork.net/node/dev_toolbox/funcspec.htm.

Data Service Type: Solicit

returnURL: Not Used

Request: NetDMR.GetScheduledDMRsByDMR_v1.0
Parameters:

Table 4-3. Data Service Parameters, Order, and Format

	Position
	Name
	Data Type
	Required?
	Max Length
	Wildcard attributes (character and behavior)
	Notes and Examples

	1
	GetScheduledDMRsByDMRParams
	XML Dcoument
	Yes
	N/A
	N/A
	See Section 4.3.2

4.3.1 Service Requirements

The GetScheduledDMRsByDMR service requires the following:

· GetScheduledDMRsByDMRParams parameter conformant with the schema specified in Section 5.5. The XML file contains the following:

· A list of DMRs to return. A DMR is uniquely identified by the Permit ID, Permitted Feature ID, Limit Set Designator, and Monitoring Period End Date. At least one DMR must be provided.
· The service should return all specified DMRs that exist in the source system (e.g., ICIS-NPDES).

· If a specified DMR does not exist in the source system (e.g., ICIS-NPDES), nothing should be returned for that DMR.

· If none of the requested DMRs exist in the source system (e.g., ICIS-NPDES), an XML document that contains no DMR information should be returned. See Section 4.3.6 for an applicable use case.

· The status of the transaction must be in one of three states: Pending, Completed, or Failed. See Section 4.3.4 for more information.

· If an error is encountered that prevents the successful processing of the request, one of the following must occur:

· If the transactionID has not been returned to the user, a SOAP Fault code will be returned instead of a transactionID. The following faults may be returned:

· E_AccessDenied: If the NAAS account is not authorized to perform the request

· E_InvalidToken: If the token provided is invalid (e.g. was not issued by NAAS)

· E_TokenExpired: If the token is expired

· If the transactionID for the request has been returned to the user, the status of the request must be set to ‘Failed’.

· (Optional) If the transaction is set to ‘Failed’ because the GetScheduledDMRsByDMRParams parameter does not validate against the schema, a validation report may be generated and made available for download. If a Service Provider provides such a report, it must be named ‘ValidationResults.xml’. The format of the validation report is specified by the Service Provider.

· Successful processing of the request must result in an XML instance document as defined in Section 5.4. The result document must be named according to the following naming convention “<transactionID> Response.zip” (e.g., bddc6601-1e7c-41b9-942b-175dbba628c8_Response.zip).

· All result documents must be zipped using the standard PKWare zip compression format (http://www.pkware.com/documents/casestudies/APPNOTE.TXT).

· All documents must be retrievable via the Download service by providing the transactionID returned from the Solicit request.

· All documents that will be made available for Download must be made available either prior to or at the same time as the status of the transaction is set to ‘Failed’ or ‘Completed’.

4.3.2 Parameter Descriptions

The service uses a single XML based parameter, GetScheduledDMRsByDMRParams. The parameter consolidates all information required for the request in to a single parameter. It must be a valid XML document that conforms to the schema specified in Section 5.5.

4.3.3 Result Documents

The service will generate one of three results depending on whether the service request is valid, whether a transactionID has already been returned, and whether a valid request completed successfully.

Invalid Request

If it is determined that the request is invalid and the transactionID has not been returned, a SOAP fault will be returned instead of a transactionID. See Section 4.3.1 Service Requirements for more details on which SOAP faults would be returned under various scenarios. By returning the SOAP fault the transaction is effectively terminated. If a transactionID is not provided, calls to subsequent services such as GetStatus and Download are not applicable.

If it is determined that the request is invalid after the transactionID has been returned, the status of the transaction must be set to ‘Failed’. A Service Provider may optionally provide a ValidationResults.xml document if the GetScheduledDMRsByDMRParams does not conform to the associated schema. The Service User (e.g., NetDMR) is responsible for determining how to proceed after a failed transaction.

Failed Processing of Valid Request

If a valid request cannot be successfully processed, the status of the transaction must be set to ‘Failed’. An error report is optional. The EPA implementation of this service will not provide an error report in this case. The Service User (e.g., NetDMR) is responsible for determining how to proceed after a failed transaction.

Successful Processing of Valid Request

If a valid request is successfully processed, an XML instance document conformant with Section 5.2 will be returned. The document must be named according to the following convention

“<transactionID>_Response.xml” (e.g., bddc6601-1e7c-41b9-942b-75dbba628c8_Response.xml). As specified in the requirements, this document should be made available as a zipped file. The zipped file should be named the same as the XML file, except with a .zip extension instead of the .xml extension.

4.3.4 Transaction Status

The status of the Solicit request can be tracked using the GetStatus service. The request will be in one of the following status states:

1. Pending – The Service Provider (e.g., CDX) has received the request. A transactionID has been generated and returned to the user.

2. Completed – The request has been completed successfully (no errors) and the results are available for Download.

3. Failed – The request processing failed.

4.3.5 Service Access and Security

See Section 3.1.1 for general information on how security will be implemented for the GetScheduledDMRsByDMR data flow and service.

4.3.6 Use Case Scenarios

This section provides use cases for the service and the results that should be returned. Both valid and invalid use cases are described. The use cases provide examples of each type of result that could occur, and are not an exhaustive list of all the permutations of request parameters.

Valid Use Cases

Each use case below outlines scenarios in which valid parameters are provided to the service. Assume the following for all scenarios:

· The user has successfully authenticated using the Authenticate service and has a valid security token.

· The NAAS account used in the Authenticate service call is authorized to call the service.

· A valid GetScheduledDMRsByDMRParams parameter is provided as specified in Section 4.2.2 and 5.4.

For each scenario an XML instance document that conforms to the schema specified in Section 5.5 is created.

1. Service User provides a list of DMRs. All the DMRs exist within the source system (e.g., ICIS-NPDES).

a. Return all the DMRs.

2. Service User provides a list of DMRs. At least one of the specified DMRs does not exist is the source system (e.g., ICIS-NPDES).

a. Return all the DMRs that exist.

3. No DMRs match the specified criteria

a. Return an XML instance document that contains no DMR elements. See the sample XML instance document EmptyDMRs_Message_Example.xml.

Error Use Cases

Each use case below outlines scenarios for which the service should generate an error. These use cases assume the user already has a security token, though not necessary a valid one.

1. Service User provides an invalid security token (e.g., not a NAAS token):

a. Return an E_InvalidToken SOAP fault

2. Service User provides a NAAS security token that has expired:

a. Return an E_TokenExpired SOAP fault

3. Service User does not provide a valid GetScheduledDMRsByDMRParams param as specific in Section 5.4:

a. Set the status of the transaction to ‘Failed’
b. (Optional) Provide an XML Validation Report that specifies the failure

4. Service User provides a valid request, but after the request has been accepted (transaction status set to ‘Pending’) and the transactionID returned, an error that prevents the request from being completed is encountered. For example, an unrecoverable exception was thrown by the ICIS-NPDES Node while processing the request (e.g., ICIS-NPDES database connection goes down):

a. Set the status of the transaction to ‘Failed’.

CDX-Specific Error Use Cases

While these use cases are specific to the CDX environment, similar use cases apply to any Service Provider that forwards the request to another Node.

5. The ICIS-NPDES Node is not available when CDX first attempts to forward the request.

a. While not required by this FCD, it is recommended that CDX periodically retry forwarding the request over the course of a 24 hour period. If, after 24 hours, the forward does not complete successfully, CDX should set the transaction to ‘Failed’.

b. If CDX does not support retrying the forward to the ICIS-NPDES Node, it must set the transaction to ‘Failed’.

6. The CDX Node is not available when ICIS-NPDES attempts to Notify or Submit the results of the request to the CDX Node. If the ICIS-NPDES Node does not retry the Notify and/or Submit request, the transaction will stay in a ‘Pending’ state indefinitely in the CDX Node unless the CDX Node automatically sets the transaction to the ‘Failed’ status after a specified period of time.

a. While not required by this FCD, the ICIS-NPDES Node should accommodate periods when the CDX Node is not available and retry the requests on CDX for a specified amount of time.

b. While not required by this FCD, coordination between CDX and ICIS-NPDES Node should occur such that a defined trigger or process will prevent a transaction from staying in the ‘Pending’ status indefinitely.
The approach taken by CDX and the ICIS-NPDES Node for handling the other’s unavailability should be documented. This documentation is outside the scope of this FCD.

4.4 ICIS-NPDES Batch Flow Submit

The ICIS-NPDES Batch Flow documentation provides a complete description of the Submit service. This section specifies the result documents that will be generated by the ICIS-NPDES Batch Flow for the EMDF.

A detailed description of the Exchange Network specifications for a submit service can be found in the Exchange Network Node Functional Specifications (version 1.1) at http://www.exchangenetwork.net/node/dev_toolbox/funcspec.htm.

4.4.1 Service Requirements

This section describes EMDF requirements for the ICIS-NPDES Batch flow results document.

· The result document generated in response to the Batch Flow request must be:
· Available via the Exchange Network Download service.

· Named according to the following specification: <transactionID>_Response.xml.

· Conformant with the schema defined in Section 5.6.

· Zipped using the standard PKWare zip compression format (http://www.pkware.com/documents/casestudies/APPNOTE.TXT).

· The result document must be retrievable using the Download service by providing the transactionID returned from the Batch Flow request in conjunction with the document name.

· Result documents must be made available to Download either prior to or at the same time as when the status of the transaction is set to ‘Failed’ or ‘Completed’.

· A Service User must be able to specify in the Submit request whether ICIS-NPDES should generate the result documents according to EMDF specifications.
4.4.2 Parameter Descriptions

The ICIS-NPDES Batch Flow documentation provides a complete description of the parameters used in the Submit service. At the time this document was generated, it is anticipated that the parameter(s) or flag(s) that will direct ICIS-NPDES to generate the Submit response conformant with EMDF requirement will be included in the header schema used to wrap Submit payloads. See the ICIS-NPDES Batch Flow documentation for a complete description of the Batch Flow and the use of the header schema to specify EMDF response format.

4.4.3 Result Documents

The documents that are available through the Download service as a result of an ICIS-NPDES Batch Flow (Batch Flow) Submit request depend on the status of the request.
Failed
A status of ‘Failed’ is set under various circumstances by the Service Provider (e.g., CDX). As outlined in the ICIS-NPDES Batch Flow FCD, the EPA implementation of the Batch Flow Submit service sets the status of a request to Failed under the following circumstances,
· All the XML files included in the submission either fail XML validation or virus scanning by CDX.
· CDX was not able to successfully distribute the request to the ICIS-NPDES Node.
All Failed transactions must have at least two documents available for Download:
XML Validation Report: Includes schema validation errors that exist within the submitted XML files. The content and format of the CDX implementation will be determined by EPA and CDX staff. The file must be named “submission-metadata.xml”.
Virus Scanning Report: The name, content, and format of the report for the CDX implementation will be determined by EPA and CDX staff.

Completed

The transaction is set to completed if at least one file in the DMR submission was distributed from CDX to ICIS-NPDES; and ICIS-NPDES has finished processing the submission (with or without errors). See the Batch IPT documentation for more information.
All Completed transactions will have at least three documents available for Download:

XML Validation Result: Includes schema validation errors that exist in the submitted XML files. The content and format of the CDX implementation will be determined by EPA and CDX staff. The file must be named “submission-metadata.xml”.

Virus Scanning Result: The name, content, and format of this report for the CDX implementation will be determined by EPA and CDX staff.

NPDES Result: A single XML file, conformant with the schema specified in Section 5.6, that contains the result of processing the Submit request. The name of the report follows the naming convention “<TransactionID>_Response.xml” where <TransactionID> is replaced with the transactionID returned by the Submit request (e.g., bddc6601-1e7c-41b9-942b-175dbba628c8_Response.xml).
4.4.4 Transaction Status

The status of the Submit request can be tracked using the GetStatus service. The request will be in one of the following status states:

1. Received – The Service Provider (e.g., CDX) has received and saved the entire DMR submission.
2. Pending - At least one file in the DMR submission passed virus checking and XML validation;
3. Completed - At least one file in the DMR submission pass virus checking and XML validation; processing of the submission has been completed (with or without errors).
4. Failed - No files in the DMR submission passed virus checking and XML validation without errors.
See the ICIS-NPDES Batch Flow documentation for more information on these status states, including when they are set.
4.4.5 Service Access and Security

See the ICIS-NPDES Batch Flow documentation for information on Service Access and Security.

4.4.6 Use Case Scenarios

This section provides use cases for the Submit service and the results that should be returned. Both valid and invalid use cases are described. The use cases provide examples of each type of result that could occur, and are not an exhaustive list of all the permutations of request parameters.

Valid Use Cases

Each use case below outlines scenarios in which valid parameters are provided to the service. Assume the following for all scenarios:

· The user has successfully authenticated using the Authenticate service and has a valid security token.

· The NAAS account used in the Authenticate service call is authorized to call the service.

· All XML files provided in the Submit request are valid per the ICIS-NPDES Batch Flow specifications.

· The results of the request will be generated per the EMDF specifications.
For each scenario an XML instance document that conforms to the schema specified in Section 5.6 is created.

1. Service User submits an XML file that contains multiple DMRs for a regulatory authority. The source system (e.g., CDX and ICIS-NPDES) does not encounter any errors when processing the submission.

a. Set the status of the transaction to ‘Completed.’

b. Generate a result document conformant with the schema in Section 5.6. The XML document will not contain a SubmissionErrors element.
Error Use Cases

Each use case below outlines scenarios for which the service should generate an error. These use cases assume the user already has a valid security token.

1. Service User provides a submission file conformant with the ICIS-NPDES Batch Flow specifications. The Service Provider determines that the file contains a virus.

a. Set the status of the transaction to ‘Failed.’
b. Provide a Virus Scan report
c. Provide an XML Validation Report.

2. Service User does not provide a submission file conformant with the ICIS-NPDES Batch Flow specifications.
a. Set the status of the transaction to ‘Failed.’
b. Provide a Virus Scan report (if applicable)
c. Provide an XML Validation Report that specifies the failure.
3. Service User submits an XML file conformant with the ICIS-NPDES Batch schema that contains one or more DMRs for a regulatory authority. The source system (e.g., ICIS-NPDES) encounters a critical error (e.g., database connection not available) that prevents it from processing the submission.

a. Set the status of the transaction to ‘Completed’

b. Generate a result document conformant with the schema in Section 5.6. The document contains a SubmissionErrors element with one or more SubmissionError child elements that define the transaction level errors that were encountered.

4. Service User submits an XML file that contains multiple DMRs for a regulatory authority. The source system (e.g., ICIS-NPDES) successfully processes a subset of the DMRs, but encounters various errors that prevent it from processing all of the DMRs.

a. Set the status of the transaction to ‘Completed’

b. Generate a result document conformant with the schema in Section 5.6. The document contains a SubmissionErrors element with one or more SubmissionError child elements that define the DMR and Parameter level errors that were encountered.

CDX-Specific Error Use Cases

While these use cases are specific to the CDX environment, similar use cases apply to any Service Provider that forwards the request to another Node.

1. The ICIS-NPDES Node is not available when CDX first attempts to forward the request.

a. While not required by this FCD, it is recommended that CDX periodically retry forwarding the request over the course of a 24 hour period. If, after 24 hours, the forward does not complete successfully, CDX should set the transaction to ‘Failed’.

b. If CDX does not support retrying the forward to the ICIS-NPDES Node, it must set the transaction to ‘Failed’.

2. The CDX Node is not available when ICIS-NPDES attempts to Notify or Submit the results of the request to the CDX Node. If the ICIS-NPDES Node does not retry the Notify and/or Submit request, the transaction will stay in a ‘Pending’ state indefinitely in the CDX Node unless the CDX Node automatically sets the transaction to the ‘Failed’ status after a specified period of time.

a. While not required by this FCD, the ICIS-NPDES Node should accommodate periods when the CDX Node is not available and retry the requests on CDX for a specified amount of time.

b. While not required by this FCD, coordination between CDX and ICIS-NPDES Node should occur such that a defined trigger or process will prevent a transaction from staying in the ‘Pending’ status indefinitely.
The approach taken by CDX and the ICIS-NPDES Node for handling the other’s unavailability should be documented. This documentation is outside the scope of this FCD.

4.5 Authenticate
The authenticate service is used to obtain a security token from the Network Authentication Authorization Service (NAAS). This is the first service that should be called as part of any data flow. The returned security token will be passed in all subsequent calls to the other services.

Parameters
1. userId: the User ID identifying your node.

2. credential: the password you were issued along with the User ID.

3. authenticationMethod: the method used to authenticate. Currently only the ‘password’ parameter is supported.
Returns

A securityToken used to identify the session.
For a complete description of the Authenticate service see the Exchange Network Node 1.1 functional specifications at http://www.exchangenetwork.net/node/dev_toolbox/funcspec.htm.
4.6 GetStatus

The GetStatus service is used to retrieve the current status of a previous service request. For example, it can be used to get the status of a previous call to the GetBasicPermitInfo_v1.0, GetScheduledDMRsByDate_v1.0, or GetScheduledDMRsByDMR_v1.0, and ICIS-NPDES (Submit) services.

Parameters
1. securityToken: A security token issued by the NAAS and returned from the Authenticate service.

2. transactionId: A TransactionID.
Returns
The status of the specified transaction. See the appropriate service for the list of statuses that can be returned for the request.
For a complete description of the GetStatus service see the Exchange Network Node 1.1 functional specifications at http://www.exchangenetwork.net/node/dev_toolbox/funcspec.htm.
4.7 Download

The Download service is used to download documents relating to a specific transactionID from the Node. This service is typically called after GetStatus returns “Completed” or “Failed”. The download service will be called in orchestration with the Solicit and Submit services defined in this FCD.
Parameters
1. securityToken: A security token issued by NAAS and returned from the Authenticate service.

2. transactionId: A transactionID returned by the Solicit service call.

3. dataflow: The name of the dataflow: “ICIS-NETDMR”.
4. documents: (optional). If this parameter is blank, all documents relating to this transaction will be returned. This parameter is useful to limit unnecessary download activities.
· The documents parameter is made up of the following three fields:
i. name: the name of the document you wish to download.
ii. type: the file type (XML, ZIP, OTHER).
iii. content: not used.

Returns:
A set of documents. See the following sections for more information on the documents that are made available through the Download service

GetBasicPermitInfo: Section 4.1
GetScheduledDMRsByDate: Section 4.2
GetScheduledDMRsByDMR: Section 4.3
ICIS-NPDES (Submit): Section 4.4
For a complete description of the Download service see the Exchange Network Node 1.1 functional specifications at http://www.exchangenetwork.net/node/dev_toolbox/funcspec.htm.
5 Schema Information

This section defines the XML Schema documents that are used by the services defined in this FCD. To maximize reuse across Service Providers (e.g., CDX) and Service Users (e.g., NetDMR), the result schemas do not include constraints such as length restrictions or required elements. It is expected that the Service Provider will generate results documents that include requested information when available, and the Service User will verify that the returned information is sufficient for the intended use of the data.
5.1 GetBasicPermitInfoParams Schema

This schema, shown in Figure 5-1, defines the format of the GetBasicPermitInfoParams parameter passed in the GetBasicPermitInfo_v1.0 Solicit request (See Section 4.1).

The schema contains the following constraints to assure the supplied XML document is a valid request for the GetBasicPermitInfo service.
· An AgencyMaps element or PermitIdentifiers element must be provided, but not both.

· If an AgencyMaps element is provided, it must contain at least one AgencyMap child element

· If a PermitIdentifiers element is provided, it must contain at least one PermitIdentifier child element.

Figure 5-1. GetBasicPermitInfoParams Schema

[image: image2.png]netdmr:GetBasicPermitinfoParamsDataType

netdmrAgencyMapsbataType

| netamriAgencyapDataType

[rrmr——

—FH

|
|
|
|
|
I
T
|
|
|
|
|
L

pT——— @J‘{-

Fretamrpermitprenix

The tu
NpDE:

netdmrAgencyTypeCodesDataType

netdmrAgencyTypeCodes £} I ~~—EHznetdmr:AgencyTypeCode

o i

[netamepermitaentiierspstaype

-
|

netamrPermitcentiers B}~ JE-{netamrermidentter &) |

e

=

‘Generated by XmiSpy

www.altova.com

5.1.1 Main Schema Components

This section describes the main components of the schema.

AgencyMaps
AgencyMaps are used to specify a group of permits in ICIS-NPDES. It uses the combination of a two character permitID prefix, PermitPrefix, and a list of agency type codes, AgencyTypeCodes, to specify the permits that should be returned. Multiple Agency Maps can be provided in a single request. The service should return only the permits that start with one of the specified prefixes and are associated with one of the corresponding agency type codes. The list of ICIS-NPDES Agency Type Codes as of December 02, 2007 is provided in Table 5-1.
Table 5-1. List of ICIS-NPDES Agency Type Codes

	Code
	Description

	CNT
	County

	EPA
	U.S. EPA

	EPC
	EPA Contractor

	EPO
	Other - EPA

	INT
	Interstate

	LCL
	Local

	MUN
	Municipal

	OFD
	Other Federal

	REG
	Regional

	STA
	State

	STC
	State Contractor

	STO
	Other - State

	TRB
	Tribal

	STF
	State - Using Federal Credentials

	TRF
	Tribal - Using Federal Credentials

AgencyMaps will be used by NetDMR to specify a group of permits for a particular Regulatory Authority. If the service is used against a NPDES source other than ICIS-NPDES, the AgencyMapping will likely need to be changed to reflect the source system.

PermitIdentifiers

Instead of an AgencyMaps element, Service Users can provide a list of specific permit IDs that should be returned by the service.
5.1.2 Examples

Sample XML instance documents are provided with the schema. The following examples are included.

Example_GetBasicPermitInfoParams_AgencyMap.xml

This instance document is an example of a GetBasicPermitInfoParams parameter that uses Agency Maps to specify the list of permits that the service should return.
Example_GetBasicPermitInfoParams_PermitIdentifiers.xml

This instance document is an example of a GetBasicPermitInfoParams parameter that uses explicitly lists the permits that the service should return.

5.2 GetBasicPermitInfo Message Schema

An instance document conforming to the GetBasicPermitInfo message schema is returned after a request to the GetBasicPermitInfo service is successfully completed. For more information on the GetBasicPermitInfo service see Section 4.1. The GetBasicPermitInfo message schema is found in the NetDMR_Permits_v1.0.xsd xml document.
Figure 5-2. GetBasicPermitInfoMessage Schema

[image: image3.png]netdmr:PermitsDataType

netdmr:PermitDataType

The aiphanmerc denther
asSgned 1 the parmit by 3 pemic
singlgantng rganzaton o
anchy s parmi o parmic
sppiction.

The code ndcatog the sdmnststie
or g e of £ e

The publc o commercil rame of
2 faciy ke (12, the ul ame.
St commanly Spees
invoices, sgrs, o b bsins
documens,or 55 ssged by the
S wnen e rare £
ambigcns).

rneldmr:rucn\'yLuculmnnaluTyDe

e —

7= ety ste, ot
o e cvess sirem o sl
e

The to hat povides addiosl nformaton
ahout 2 plce,inckcing 3 bukling e wih 5
Seoincany ok snd b an el gk
Tara. a0 melaton nama o despee
Vit o o e = 2vsiane

rmits B The rame of = ey, o,
= ilage o oo iy,

Corvare 2 e 7 0.8

s [— (- Rcnrsiecode |

it
e dosgnator w2
Gariry 2 ponce
Sirmrstye ssdvison of
2 Uit S, Cona,
e

The combinton f th 5 531 Zone
Impravemant Pian (1P) coce e
Foe-tn mancion cot (7 vatahe)
hat represent the geograhic seqmant
ot st f e 216 Coce
S by the U, posa o
st
Gaivery: o the pocl zone spechic o
S counry, cie sha s U5 where
2 o 2 v,

The colencar cot et 2 pemt
becores s,

[r———
The calendar dae that a parmit wil b o
i e 5 i,

5.2.1 Main Schema Components

The major components of the schema include:

Permit Identifier

The Permit Identifier is the ID of the permit. NetDMR displays this information as part of the Request Access functionality and on the Electronic Subscriber Agreement.

PermitStatusCode
This element provides the current status of the permit. The possible list of statuses depends on the NPDES application that provides the data. Table 5-2 lists the possible permit status codes that can be returned for an ICIS-NPDES permit.
Table 5-2 ICIS-NPDES Permit Status Codes

	Code
	Description

	ADC
	Administratively Continued

	EFF
	Effective

	EXP
	Expired

	NON
	Not Needed

	PND
	Pending

	TRM
	Terminated

FacilitySiteName

The FacilitySiteName is the name of the Facility. NetDMR displays this information as part of the Request Access functionality and on the Electronic Subscriber Agreement.

FacilityLocation

The Facility Location provides address information on the facility for which the permit was issued. NetDMR displays this information within the Request Access functionality, and on the Electronic Subscriber Agreement.

5.2.2 Examples

Sample XML instance documents are provided with the schema. The following examples are included.

Example_GetBasicPermitInfo_Result.xml

This example instance document shows two permits returned for the service request.

Example_GetBasicPermitInfo_Result_Empty.xml

This example instance document shows the expected response if no permits meet the criteria specified in the service request.

5.3 GetScheduledDMRsByDateParams Schema

This schema, contained in the NetDMR_GetScheduledDMRsByDateParams_v1.0.xsd xml file and shown in Figure 5-3, defines the format of the GetScheduledDMRsByDateParams parameter passed in the GetScheduledDMRsByDate_v1.0 Solicit request (See Section 4.2).
The schema contains the following constraints to assure the supplied XML document is a valid request for the GetScheduledDMRsByDate service.

· An AgencyMaps element or PermitIdentifiers element must be provided, but not both.

· If an AgencyMaps element is provided, it must contain at least one AgencyMap child element

· If a PermitIdentifiers element is provided, it must contain at least one PermitIdentifier child element.

· Either the MonitoringPeriodStartDateRange element or the MonitoringPeriodEndDateRange must be provided.

· Both the MonitoringPeriodStartDateRange and MonitoringPeriodEndDateRange may be provided.

· Both RangeStartDate and RangeEndDate child elements must be provided whenever a MonitoringPeriodStartDateRange or MonitoringPeriodEndDateRange is provided.

Figure 5-3. GetScheduleDMRsByDateParams Schema

[image: image4.png]netdmr:GetScheduledDMRsByDateParamsDataType

netdmrAgencyMapsbataType

| netamriAgencyapDataType

pyerr—

netdmr-DateRangeDataType

5.3.1 Main Schema Components

This section describes the main components of the schema.

AgencyMap
AgencyMaps are used to specify a group of permits in ICIS-NPDES. It uses the combination of a two character permitID prefix, PermitPrefix, and a list of agency type codes, AgencyTypeCodes, to specify the relevant permits. Multiple Agency Maps can be provided in a single request. The service should return DMRs for permits that start with one of the specified prefixes and are associated with one of the specified agency type codes. See Table 5-1 for a current list of ICIS-NPDES Agency Type Codes.

AgencyMaps will be used by NetDMR to specify a group of permits for a particular Regulatory Authority. If the service is used against a NPDES source other than ICIS-NPDES, the AgencyMaps will likely need to be changed to reflect the source system.

PermitIdentifiers

Instead of an AgencyMap, Service Users can provide a list of specific permitIDs to identify the permits for which DMRs should be returned.

MonitoringPeriodStartDateRange

This optional element specifies an inclusive date range for the monitoring period start date (MPSD) associated with a scheduled DMR. A DMR will only be returned if its MPSD occurs during within this range.
MonitoringPeriodEndDateRange

This optional element specifies an inclusive date range for the monitoring period end date (MPED) associated with a scheduled DMR. A DMR will only be returned if its MPED occurs during this range. The specified StartDate must be less than the EndDate.

5.3.2 Examples

Sample XML instance documents are provided with the schema. The following examples are included.

Example_GetScheduledDMRsByDateParams_AgencyMap _MPSD.xml

This example instance document is an example of a GetScheduleDMRsByDateParams parameter that provides an Agency Map and MPSD date range.
Example_GetScheduledDMRsByDateParams_Permits_MPSD_MPED.xml

This example instance document is an example of a GetScheduleDMRsByDateParams parameter that provides a list of permits, a MPSD date range, and a MPED range.
GetScheduledDMRsByDMRParams Schema

This schema, contained in the NetDMR_GetScheduledDMRsByDMRParams_v1.0.xsd xml file and shown in Figure 5-4, defines the format of the GetScheduledDMRsByDMRParams parameter passed in the GetScheduledDMRsByDMR_v1.0 Solicit request (See Section 4.3). The schema contains the following constraints to assure the supplied XML document is a valid request for the GetScheduledDMRsByDMR service.

· The DischarageMonitoringReportIdentifiers element must be provided.
· At least one DischargeMonitoringReportIdentifier child element must be contained within the DischargeMonitoringReportIdentifiers element.
· For each DischargeMonitoringReportIdentifier element included, it must include the child elements:

· PermitIdentifier

· PermittedFeatureIdentifier

· LimitSetDesignator

· MonitoringPeriodEndDate

Figure 5-4. GetScheduledDMRsByDMRParams Schema

[image: image5.png]netdmr:GetScheduledDMRSByDMRParamsDataType

netamr-DischargeMonitoringReportidentifiersDataType.

reramroschargetonongRe- B ()2

netdmr:DischargeMonitoringRe. a

ST————

netdmrDischargeMonitoringReportidentifirdataType. |

Enetomrpermsentiter B

netdmrLimitsetDesignator
™

ricue et or
i frsg
Do o eper

‘Generated by XmiSpy

a

www.altova.com

5.3.3 Main Schema Components

This section describes the main components of the schema.

DischargeMonitoringReportIdentifiers

This required element specifies one or more DMRs that should be returned using nested DischargeMonitoringReportIdentifier elements. Each DMR is uniquely identified by supplying four child elements:

· PermitIdentifier

· PermittedFeatureIdentifier

· LimitSetDesignator

· MonitoringPeriodEndDate

5.3.4 Examples

Sample XML instance documents are provided with the schema. The following examples are included.

Example_GetScheduledDMRsByDMRParams.xml

This example instance document is an example of the GetScheduledDMRsByDMRParams parameter that could be passed in the GetScheduledDMRsByDMR service request.

5.4 GetScheduledDMRsByX Message Schema

An instance document conforming to the message schema must be returned after a request to the GetScheduledDMRsByDate or GetScheduledDMRsByDMR service is successfully processed. For more information on the GetScheduledDMRsByDate or GetScheduledDMRsByDMR service see Section 4.2 and Section 4.3, respectively. The schema document, NetDMR_PermitsScheduledDMRs_v1.0.xsd, is structured in a hierarchical manner to minimize the number of redundant elements and reduce the size of the instance documents. Figure 5-5 shows the first few levels of the schema.
Figure 5-5. Result Schema

[image: image6.png]PermitsScheduledDMRs B+

netdmr:Permits ScheduledDMRsDataType

fm—————

netdmrpermitscheduledDMRsDataType |

a

‘Generated by XmiSpy

www.altova.com

5.4.1 Main Schema Components

This section describes the main components of the schema.

PermitScheduledDMRs

This element contains a set of scheduled DMRs for a permit. It contains basic permit information about the permit such as the permitID, mailing addresses, the permit status, and status dates. Each instance of the PermitScheduledDMRs element within a single XML instance file must contain a unique value for the PermitIdentifier element. It contains a child element, PermittedFeatures, which includes all the permitted features for which a scheduled DMR is being returned.
PermittedFeature

A PermittedFeature element is created for each permitted feature for which a scheduled DMR is being returned in the result. If a DMR is not being returned for a permitted feature, a permitted feature element will not be created for that permitted feature. The element contains identifying information for the permitted feature and flow information. A child element, LimitSets, includes the limit sets for the permit ID that correspond to a scheduled DMR that is being returned. Figure 5-5 shows the PermittedFeature data type.
Figure 5-6. PermittedFeature Data Type

[image: image7.png]netdmrPermittedFeaturesDataType

Permitiedeatures L3

‘Generated by XmiSpy www.altova.com

LimitSet

A LimitSet element is created for each limit set of the permitted feature for which a scheduled DMR is being returned in the result. If a DMR is not being returned for a limit set, a LimitSet element will not be created for that limit set. The element contains identifying information for the limit set and other basic information. A child element, MonitoringPeriods, includes the monitoring periods for the scheduled DMRs that are being returned.

Figure 5-7. LimitSets Data Type

[image: image8.png]rneldmr :LimitSetsDataType |

‘Generated by XmiSpy www.altova.com

MonitoringPeriod

The combination of the permit identifier, permitted feature, limit set, and monitoring period end date uniquely identify a DMR. Each MonitoringPeriod element is nested within a LimitSet element. A MonitoringPeriod element is created for each monitoring period of the limit set for which a scheduled DMR is being returned in the result. The monitoring period contains the start, end, and due dates for the DMR. It also contains a Limit element that includes all the limits associated with the DMR.

Figure 5-8. MonitoringPeriods Data Type

[image: image9.png]MonitoringPeriod £

e

‘Generated by XmiSpy www.altova.com

Limit
A limit element is created for each limit in the DMR. It contains general information about the limit such as parameter code, frequency of analysis, and sample type. A child element, NumericConditions, includes the conditions associated with the DMR limit.

Figure 5-9. Limit Data Type

[image: image10.png]r

netdmrLimitsDataType

Cortare

‘Generated by XmiSpy www.altova.com

NumericCondition
The NumericCondition element is the finest level of granularity in the result schema. It represents an actual condition for the containing limit. Each condition is uniquely identified by the NumericConditionTypeCode.
Figure 5-10. NumericCondition Data Type

[image: image11.png]netdmrNumericConditionsDataType

——
e oftwo avalable quanties o tree

HumericConditions £}

[——
NomareCondeion skmenss

The paret of NumesicCondion

i &
represres.
=S

1o than, andir sl 1 he
Nomaseanaton e, The Fad my s
incicae £t vk & seimaced o 123

Siher o ey v o e rumarc vaia o

5 ey o ot massrimant

ofth parameres and i 2.1 0 vake.

S s b b2 he 2w Ot

R Vi o e apnens] o rorsd

monioring. Ths dlemen & wed wihin 3

DR 12 Spachy 3 i condton or =
DR

‘Generated by XmiSpy www.altova.com

5.4.2 Examples

Sample XML instance documents are provided with the schema. The following examples are included.

Example_GetScheduledDMRsByX_Result.xml

This example instance document includes two scheduled DMRs for the same permit, permitted feature, and limit set.

Example_GetScheduledDMRsByX_Result_Empty.xml

This example instance document provides a sample response if no scheduled DMRs meet the specified criteria in the service request.

5.5 Error Message Data Flow Schema

This schema, NetDMR_SubmissionResponse_v1.0.xsd, defines the format of the result document provided by a Service Provider (e.g., CDX) in response to an ICIS-NPDES Batch Flow Submit request. The first few levels of the schema are shown in Figure 5-11.
Figure 5-11. ICIS-NPDES Submit Result Schema

[image: image12.png]netdmr:SubmissionResponsebataType

=
o netdmr:SubmissionErrorsbataType
Con. T et o

o g netdmr:SubmissionErrorDataType

5.5.1 Main Schema Components

This section describes the main components of the schema.

SubmissionResponse

The SubmissionReponse element, shown in Figure 5-11, is the root element of the XML document generated as a result of a DMR submission. It contains general submission information, such as the transactionID associated with the submission and the date the SubmissionResult XML file was created. It contains a child element, SubmissionErrors that includes any errors that occurred while processing the submission.
SubmissionError
A SubmissionError defines a set of errors that were encountered while processing the DMR submission. It contains a SubmissionErrorKey element and one or more ErrorReports that describe the errors associated with the SubmissionErrorKey. An error is reported at one of three levels

· Transaction: The error is associated with the overall submission.

· DMR: The error is associated with a particular DMR in the submission.

· Parameter: The error is associated with a particular parameter in the submission.

If a SubmissionError is at the transaction level, a SubmissionErrorKey element must not be provided. The SubmissionResponse element already contains the transactionIdentifier element. It is assumed that all SubmissionError elements without a SubmissionErrorKey child element are Transaction level errors. If the SubmissionError is at the DMR or Parameter level, a SubmissionErrorKey must be provided.
ErrorReport

The ErrorReport describes an error that was encountered. Each ErrorReport includes an optional ErrorCode, and a required ErrorTypeCode, and ErrorDescription child elements.
Error Code

The ErrorCode is a Service Provider (e.g., CDX)-specific error message that uniquely identifies the error. Although optional, an Error Code should be provided when available.

ErrorTypeCode

The ErrorTypeCode specifies the type of message that is being returned. ErrorTypeCodes include the following:
· Information: An information message is for informational purposes only.

· Warning: A warning message indicates that the submission was successfully processed, but the submitter should verify some information. For example, a warning may be generated if a limit value is exceeded by more than five hundred percent. Although the value provided is accepted, a data entry error may have occurred.
· Error: An error message indicated that an error that prevented successful processing of the entire submission, DMR, or DMR Parameter was encountered.
SubmissionErrorKey

This element contains the information required to identify the DMR or Parameter in the submission that caused the error. A single XML file can potentially include multiple transaction types (Change, Delete, New, Mass Delete, Replace) for the same DMR or Parameter; therefore the SubmissionTransactionType is included in the DMR and Parameter errors to allow for easy identification of the error source.
Figure 5-12. SubmissionErrorKey Schema
[image: image13.png]T

netdmr:SubmissionErrorkeyDataType

netdmrDischargeMonitoringReportidentifirdataType. |

fnetamrpermitidentiier &1

netdmrLimitsetDesignator

The unique ertferfor
ouping of s for
o for

[netamr:MonitoringperiodEndbate

E— FrabiR

Fhetamr:submissionTransaction...

Fhetamr:submissionTransaction...

S

pion of e
ype o monor

L Eetamr:seasonidentifier

Uricue rmberthat denche
i for e

‘Generated by XmiSpy

www.altova.com

5.5.2 Examples

Sample XML instance documents are provided with the schema. The following examples are included.

Example_ICIS-NPDES_Submit_Result_Errors.xml

This instance document is an example of a DMR submission that resulted in multiple DMR and Parameter level errors and warnings.
Example_ICIS-NPDES_Submit_Result_NoErrors.xml

This instance document is an example of a DMR submission that resulted in no errors.
NetDMR Data Flows

Flow Configuration Document

Version: 1.0

06 October 2008

Prepared for:

Environmental Council of the States

444 N. Capitol St. NW

Suite 445

Washington, D.C. 20001

Prepared by:

Eastern Research Group, Inc (ERG)

14555 Avion Parkway

Chantilly, VA 20151

PAGE
1

