Developing and Implementing an Exchange Network Node
Version 1.1

Excerpt From Version 1.1 of the 30 Minute Guide to
Developing and Implementing an Exchange Network Node

This document is an excerpt from another document called the 30 Minute Guide to Developing and Implementing and Exchange Network Node. The original document was prepared in 2005 for the Exchange Network governance by Windsor Solutions, Inc.

Deciding on Your Technical Architecture

This section describes a number of potentially useful considerations when a Partner begins the process of determining a suitable technical architecture. The technical architecture defines the technology considerations and decisions that will guide many aspects of design, development and deployment of a Node.

The capabilities of a Node itself are based on a series of well-defined functional specifications, and so the architecture chosen should be compatible with these specifications as well as the standards and existing infrastructure at the agency. It is appropriate to define the desired technical architecture prior to either identifying a Node implementation to reuse or beginning development of a custom solution.

The aspects of the Node Technical Architecture that are particularly important are:

· Definition of the physical environment including the identification of physical hardware, hosting platform and network components.

· Identification of logical components including middleware, applications and frameworks necessary to support the Node specifications while adhering to any agency-wide standards.

· Selection of the necessary development, management and support tools, which may be used to enhance and extend Node functionality.
· The types of more advanced Node capabilities that are not as critical for an initial Node implementation, but have been found to be important for longer term use, and would impact the architecture chosen for the Node.
1. Physical Components of Node Architecture

1.1. Network Topology

One of the most critical decisions to consider prior to deployment of the Node is the physical location of the Node’s external interfaces (services) and the supporting components (RDBMS, Content Management, LDAP, etc.). This decision is typically dictated by the existing agency-wide methodology, which is likely to fall within one of three scenarios: DMZ-centric, DMZ-light and Proxy-centric.
1.1.1. DMZ-Centric Network Topology
The DMZ-centric approach tries to isolate the Node and its dependant components into the agency network’s “Demilitarized Zone” (DMZ). Partners that employ this approach either host the Node on existing hardware already deployed in the DMZ or by deploying the Node to its own independent hosting environment.
[image: image1.png]Tnternet

Parer

Parer

Parer

Appicaton

Server

Figure 5: DMZ-Centric Topology
1.1.2. DMZ-Light Network Topology
The DMZ-Light approach also uses the agency DMZ, but only to host the actual Web services interfaces. The application server and its supporting components are hosted from the internal network.
[image: image2.png]Tnternet

Parer

Parer

Parer

Appicaton

Server

Figure 6: DMZ-Light Topology
1.1.3. Proxy-Centric Network Topology

A proxy-centric solution utilizes a proxy server as a virtual host for the Node while relaying all requests to an internal server where such requests are processed. This approach is likely to be the preferred solution in environments where reversed-proxy solutions represent standard operating procedures for hosting Web applications.

In all scenarios, the supporting components such as the Node hosting database and/or exchange data providers are almost always hosted from a trusted network protected by firewalls where no direct access from the outside world is allowed.
[image: image3.png]Parer

Parer

weo
services
Imeraces

Parer

Appicaton
Sorver

Figure 7: Proxy-Centric Topology
1.2. Dedicated vs. Shared Server

Based on the States that have already implemented Nodes, there is no definitive answer to whether the Node should reside on a shared or dedicated server. The decision to either co-host the Node with existing applications or isolate it to its own environment should be based on factors such as cost, selected architecture (i.e., will this be a thin-Node, or will it also perform XML formulation), and the existing load on the server.

Microsoft Server-based Nodes seem to have generally been hosted on a dedicated server (possible due to Microsoft’s recommendation that Web services and Web sites should be kept apart), whereas UNIX based Nodes seem to have generally been co-hosted on servers along with other applications.

1.3. Separate Testing Environment

To assure maximum stability in their production environment as well as to assure maximum testing it is recommended that Partners establish a production-mirrored test environment where the new exchanges and/or Node enhancements can be tested prior to deployment in production.

This may not be of great importance during the initial deployment, and if the Node server is dedicated only to the Node, but once the Node is up and running, it is intended to be accessible to other Partners on a 24x7 basis, and the risk to stability caused by using the production Node for testing of enhancement, fixes or new exchanges should be avoided if possible.

1.4. Staged RDBMS

Due to the demands of some exchange database queries it is recommended that a Partner employ a staged database environment which will allow the exchange data to be pre-filtered and de-normalized. This will ensure the maximum performance in fulfilling incoming data requests without impacting the internal production systems that provide the data. This approach may be more challenging for any real-time systems (e.g., Air Quality Monitoring data), as a real-time replication process would be needed to stage the data.
2. Logical Components of the Node Architecture

With the increasing use of Web services there are a number of platforms and software packages capable of supporting the Node specifications.

While it is possible to develop a Node using many of these solutions, in general there appear to be two primary middleware platforms used in for implementations of a Node; Microsoft’s .NET and Sun Microsystems’s Java. A Partner’s choice between these two or other alternatives will be influenced by compatibility with existing architecture and the experience of support staff.

The choice of middleware and hosting platform are closely related and often dictate a particular solution for one or the other; for example, the Microsoft architecture virtually requires the use of IIS when developing Web services using .NET technology. In contrast, the choice of Java as the middleware allows greater flexibility in choosing both the application server as well as the hosting platform. For example, it is perfectly feasible that a Java-based Node be hosted from Oracle Application Server, Tomcat/Axis or IBM WebSphere on the Windows, Linux or UNIX platforms.

For a database platform, there are even more choices. Though the most commonly used solutions are Oracle and SQL Server, other Partners have utilized DB2, MySQL, PostgeSQL or even MS Access. It is important to realize that middleware and database vendors are constantly enhancing their products and with the popularity of XML and Web services, their related capabilities are being frequently upgraded.

Application and database server choices are often driven by cost. When making these choices, Partners should consider not only the purchasing and deployment costs, but also the ongoing support and Node maintenance costs.

3. Management, Support and Extensibility Tools

3.1. Node Administration User Interface

While some Node deployments support a fully integrated GUI-based management and testing environment, many installations require the management to be performed through the editing of configuration files. In the latter case, if the staff that are tasked with the oversight and management of the Node do not have direct access to the hosting environment, then they must rely on the help of network administrators.

In contrast, GUI based tools that manage the configuration in a central location (database or LDAP) allow the Node administrator to manage the Node configuration and monitor its activity without having a physical access to the hosting environment. This approach also allows for more customizable Node monitoring and configuration; depending on the role of an individual user within the agency, he or she may have rights for monitoring or management of a particular exchange.

3.2. Other Tools

The developer tool of choice for XML manipulation and validation is Altova XMLSpy®.
 XMLSpy® provides a number of useful features, including XML validation, design of XML schemas and transformation style sheets.

Alternatively, some vendor-specific solutions may provide a somewhat integrated environment or utilities to support the XML schema mapping and validation.

It is also worth mentioning that some preliminary studies are being conducted to evaluate other products like the US EPA CDX Schematron tool to perform more contextual validation of XML files, for example to validate lookup values that reside outside of the XML schema as well as more complex business rules.
4. Node Functional Capabilities

While there are a variety of implemented Node architectures with unique capabilities, there are some universal aspects of functionality that are important to the long-term scalability and flexibility of the Node. This section outlines these capabilities.

Separation of the Node and the individual exchange implementations.

One consideration for the Node architecture is the independence of the Node implementation from that of the individual exchanges. As new exchanges are added the already deployed Node infrastructure should use the new exchange extensions. This loosely coupled approach to the Node architecture allows for additions and modification to the data exchanges without the need for disruption and risk of alteration (e.g. code change and recompilation) to the Node itself.

This approach minimizes the necessary testing and allows for division of labor when developing new exchanges as the developers need to know only the interfaces required by the Node and not the Node architecture itself.
Support for an XML Document Header File on an exchange-by-exchange basis.

The Header File was developed to provide additional meta-data to the specific exchange and its payloads. The use of the Header File allows a sender and recipient to identify the particular payload during transport as well as at its processing destination. The introduction of the Header File after the Node functional specification documents were developed has created some confusion although its use is now required by several data exchanges.

While the use of Header File is nearly standard, its contents and usage vary by exchange. Ideally, a Node should be capable of designating the use and the content of the Header parameters for each exchange. This capability will support a wider spectrum of exchanges without source code modifications.
Support of authentication and authorization through both NAAS and Local Security.

Any Node exchanging data with the US EPA is required to use NAAS for its authentication. While the use of NAAS for authentication purposes is common, few Nodes rely on NAAS as their means of authorizing incoming requests. While the use of NAAS solely for authentication may be adequate if an agency only exchanges data with the US EPA, as the list of participating Partners becomes larger the need for centralized NAAS authorization will be more important.

Furthermore, the Node architecture should consider support for a local security model. Many Partners already have a standard means of authentication across multiple applications to facilitate a single-sign-on and would like to be able to leverage that same metaphor for data exchanges that are more on a local level. That approach allows for a closer integration into the existing security model without the need for replication of existent accounts on the national level.
Persistent attachment management.

The way that attachment management is implemented is not defined by the Exchange Network Specifications; however, a Node must support persistent attachments (resulting from the payload on the Submit or content generated by the internal processes). While it is feasible to save attachments on the server that hosts the Node, this approach may not scale well and may compromise the security of the server.

A more scalable and secure alternative to local attachment storage is file management based on either binary storage in a database or a dedicated file management solution. A distributed model of attachment management allows for linear scalability. Should the Node’s external interfaces need to be distributed across multiple servers (clustering) each one of these Nodes could have stateless access to the internally stored attachments.
Support for both incoming and outgoing data exchange.

While the Node architecture in its original deployment was somewhat US EPA-centric with the unidirectional data exchanges (State to US EPA), it is also important for Partner Nodes to be able to process incoming data payloads and integrate them in to their internal data stores.

Depending on the physical architecture of an individual Node, the process of integrating incoming data payloads into the internal data stores may be handled in a variety of ways. However, differentiation of incoming versus outgoing data is becoming more important, especially if the Node architecture is to be used to support electronic reporting of the reporting community.

Secured Sockets Layer (SSL) support through the use of certificates.

A node must utilize SSL technology in order to be Exchange Network compliant. The certificates issued by the US EPA that are made available to individual States are sufficient for the current data exchanges with the US EPA. However, as these certificates are self-signed (the US EPA at that point is acting as a Certificate Authority) they may not be recognized by all Partners, for example if a Node is accessed via the regulated community or external commercial applications.

While the issue can be easily resolved if encountered using a Web browser (the browser would prompt the user to accept the particular certificate), when dealing with machine-to-machine communication there is just no option for manual intervention. A variety of workarounds have been developed to deal with this issue however, when possible, the Node should be hosted from an environment where the certificate is issued by a well-known party and its full path is recognized by all common browsers.
[image: image4.png]

[image: image5.png]

[image: image6.png]

“Originally we were just out there on our own, exposed to the world. We are now behind the state firewall for our node and our data.”

“We are still working on “query costing” so we can reject those that might impact systems.”

“We used the agency’s preferred technology mostly for simplicity and cost reasons.”

� XMLSpy® is a product of Altova. For more information about XMLSpy® see http://www.altova.com/

Page 2

Prepared by Windsor Solutions, Inc.

Prepared by Windsor Solutions, Inc.

Page 1

