
 Schematron Validation and Guidance 

 i  

Schematron Validation 
and Guidance 

 
Version:  

1.0 
 

Revision Date: 
July, 18, 2007 

 
Prepared for: 

NTG 
 

Prepared by: 
Yunhao Zhang 



 Schematron Validation and Guidance 

 ii  

 
SCHEMATRON VALIDATION AND GUIDANCE 

VERSION 1.0 
 
 

July, 20 2007 
 

Revision History 

Change Record 

Version 
Number Description of Change Change 

Effective Date 
Change 

Entered By 
1.0 Initial version July 20,2007 Dr. Yunhao Zhang 

 
 

 

Abstract 
This document discusses the best practices for using Schematron rules for data 
validation within the Exchange Network. This Schematron guidance explains how 
Schematron can be utilized to validate data in an effective and fast way. Users 
should use this guide to develop Schematron rules for Nodes on the Exchange 
Network.   



XKMS Operation Guidance    Page 3 of 15 

Page 3 of 15  5/16/2008 

Table of Contents 
 

1 Introduction..................................................................................................4 

2 Business Rules and Requirements............................................................5 
2.1 Schema and Schematron.....................................................................5 
2.2 Business Rule Definitions ...................................................................5 

3 Schematron Rule Development..................................................................6 
3.1 Schematron Rule Elements .................................................................6 
3.2 Using Namespaces...............................................................................7 
3.3 Error Message Format..........................................................................7 
3.4 Schematron Software Developer Kit...................................................8 

3.4.1 Rule Validation ................................................................................9 
3.4.2 Debugging Schematron Rules.........................................................9 

4 Schematron Extensions ............................................................................10 
4.1 Regular Expression Support .............................................................10 

4.1.1 Function.........................................................................................10 
4.1.2 Parameters....................................................................................10 
4.1.3 Description ....................................................................................10 

4.2 Database Lookup................................................................................10 
4.2.1 Function.........................................................................................10 
4.2.2 Description ....................................................................................10 
4.2.3 Parameters....................................................................................11 
4.2.4 Example ........................................................................................11 

4.3 Current Date........................................................................................11 
4.3.1 Function.........................................................................................11 
4.3.2 Parameter......................................................................................11 
4.3.3 Description ....................................................................................11 

4.4 Dynamic Date Validation....................................................................11 
4.4.1 Function.........................................................................................11 
4.4.2 Description ....................................................................................11 
4.4.3 Parameters....................................................................................11 
4.4.4 Example ........................................................................................12 

4.5 Data Quality Assurance Services......................................................12 
4.5.1 Using QA Server for Schema Validation........................................13 
4.5.2 Using QA Server for Schematron Validation .................................14 
4.5.3 Deploying New Schematron Rules ................................................14 

5 References .................................................................................................15 
 
 



XKMS Operation Guidance    Page 4 of 15 

Page 4 of 15  5/16/2008 

1 Introduction 
One of the key components in a business process is data validation. This is 
especially important in conducting data exchanges where data is exchanged 
between heterogeneous systems and databases. Traditionally, data validations 
are done using procedures written in programming languages such as C++, 
Java, or Visual Basic. Such procedures could become very complex and difficult 
to develop, debug and maintain when the type of document varies. 
 
With the introduction of the Extensible Markup Language (XML), some of the 
business rules can be, at least partially, specified in XML schemas, and XML 
documents can then be validated against the schemas. Since XML is more 
restrictive than other markup languages, validation based on an XML schema 
can detect many data element errors such as type mismatches, missing 
elements and even referential integrity issues.  
 
Since an XML Schema is not defined as a data validation mechanism, many of 
the business rules cannot be handled by simply using schema definitions. This is 
where Schematron comes into play as a data validation tool. Schematron is an 
ISO standard specifically defined for data validations. 
 
Schematron has a number of advantages over traditional data validation 
methods,  including the following: 
 

• Standard format: Unlike validation in other programming languages, 
where a programmer determines how to use and enforce business rules 
using IF-THEN construct, Schematron rules follow a standard XML format. 
This allows sharing of Schematron rules cross different platforms. 

• Easier to develop and maintain: As we will demonstrate shortly, 
Schematron rules are much closer to business rules and thus simpler to 
develop. 

• Removal of  the traditional validation process: Traditional data 
validation requires two basic elements, rules and the rule engine. The rule 
engine is basically the validation process, and the rules are the set of 
validation parameters. Due to a lack of a standard validation method, each 
business process often has its own data validation process. Schematron 
however, only requires users to develop business rules. The validation 
engine is the XSLT processor, which is available on almost all platforms. 

• More flexible and powerful: Based on XPath and XSLT, Schematron 
allows the developer to randomly access any element in an XML instance 
document. 

• Highly extensible: Using the extension mechanism in XPath, developers 
can add additional functions to support condition checking and assertions. 

• Descriptive Message: Schematron allows developers to embed a natural 
language of error descriptions. 

 



XKMS Operation Guidance    Page 5 of 15 

Page 5 of 15  5/16/2008 

 
This document discusses the best practices for using Schematron rules for data 
validation within the Exchange Network. It also provides general guidance on the 
structure of business rules and format of the error messages.  
 
 

2 Business Rules and Requirements 
2.1 Schema and Schematron 
An XML schema and Schematron can both be used to validate XML instance 
documents. XML schemas focus more on data type validations and data 
structures, while Schematron can be employed to enforce business rules. There 
are many business logic rules that cannot be expressed in terms of an XML 
schema construct. For example, a project ending date must be later than the 
project starting date, a facility ID must exist in a lookup table, or if element B is 
nonempty then element A must exist. These kinds of business rules are not 
directly supported by an XML schema, but are easily enforceable using 
Schematron. 
 
The relationship between XML schemas and Schematron, in terms of data 
quality assurance, is complementary. Because XML schemas ensure basic data 
type correctness, Schematron validation should always be preceded by an XML 
schema validation. 
 
2.2 Business Rule Definitions 
 
Data validation requirements and business rules should be documented clearly 
before developing an XML schema and Schematron rules. The following table 
(Table 1) shows a recommended structure for defining business rules: 
 
Table 1: Recommended XML schema and Schematron business rule definitions 
Rule ID Data 

Element 
XML 
Element 

Rule 
statement

Test 
Conditions

Error 
Level 

Error 
Description 

Validation
Type 

An 
identifier 
for the 
rule 

The 
name of 
the data 
element 

The 
name of 
the XML 
element 

Technical 
description 
of the rule.

A list of test 
conditions 

Level of 
error 
conditions: 
Warning, 
Error or 
Critical 

A 
description 
of the error 
and how to 
fix it. 

Either 
schema or 
Schematron

 
 
Each rule should have a unique ID within the rule set.  It will be used in the error 
description by the Schematron rules. 
 



XKMS Operation Guidance    Page 6 of 15 

Page 6 of 15  5/16/2008 

The Rule Statement and Test Condition should contain enough information for 
developers to build assertions against the XML element. The Validation Type 
specifies whether the rule is checked by an XML schema or Schematron. 
 
The following table (Table 2) is an example business rule: 
 
 
Table 2: Example XML schema and Schematron business rule definitions  
Rule 
ID 

Data 
Element 

XML Element Rule statement Test Conditions Error 
Level 

Error 
Description

Valid
Type

10 Site 
Terminated 
Date  

SiteTerminate
dDate 

The date must be in 
YYYYMMDD format and 
in the range between 
1/1/1959 and current 
date. It must also be later 
than the 
SiteEstablishedDate. 

Test 1:  Format: 
YYYYMMDD 
Test 2:  Range: 
Jan. 1, 1957 <= X 
<= Current date  
Test 3:  Threshold: 
SiteEstablishedDate 
< 
SiteTerminatedDate 

Error Use the rule 
statement. 

Sche

 
 

3 Schematron Rule Development 
 
3.1 Schematron Rule Elements 
A Schematron rule contains three major elements: 
 

1. A Context: The XML element which the rule applies to. 
2. An Assert or Report construct: Test conditions the XML element must 

meet or violate respectively. This is usually an XPath expression. 
3. An Error Description: Detailed description of the error and how to fix it. 

 
A sample Schematron rule that verifies that the function ObservationDate 
complies with a set of business requirements is shown in the following table 
(Table 3) and definition example below:  
 
Table 3: Sample Schematron rule with ObservationDate 
Rule 
ID 

Data 
Element 

XML Element Rule 
statement 

Test 
Conditions 

Error 
Level 

Error 
Description 

Validation 
Type 

10 Observation 
Date 

ObservationDate The date 
must be in 
YYYYMMDD 
format and 
in the range 
between 
1/1/1959 
and current 
date. 

Test 1:  
Format: 
YYYYMMDD 
Test 2:  
Range: Jan. 
1, 1957 <= X 
<= Current 
date  

Error Use the rule 
statement. 

Schematron 

 

Formatted Table



XKMS Operation Guidance    Page 7 of 15 

Page 7 of 15  5/16/2008 

 
 
<rule context="aqs:ObservationDate"> 
 <assert test="neien:CheckDate(string(.),'', '19570101', 'Today', 
0)"> [AQS23][Error]: <name zvon:fullPath='yes'/> ObservationDate 
(<value-of select="."/>) must be in proper YYYYMMDD format and in the 
range Jan 1, 1957 through today. 
</assert> 
</rule> 
 
Note that a custom function, CheckDate, is used here to check the date format 
and date range in the sample. The rule uses a namespace prefix, AQS, in 
referencing the XML element ObservationDate.  The explanation of how to define 
XML namespaces in the rule file is discussed next. 
 
3.2 Using Namespaces 
XML elements in Schematron rules should be fully defined with XML namespace 
prefixes. An XML instance document may contain or reference multiple 
namespaces. These namespaces must be defined in the Schematron rule file as 
shown by the following example: 
 
   <ns prefix="MyPrefix" 
uri="http://www.exchangenetwork.net/schema/MySchema/2" />  
 
 
This example defines a prefix, MyPrefix, which is associated with the schema 
name space URI: http://www.exchangenetwork.net/schema/MySchema/2. Note 
that the namespace prefix is arbitrary, but the namespace URI must match 
exactly to what is defined in the schema file. 
 
For the Exchange Network, we have defined a set of custom functions which 
support table queries, date verification, and regular expression checking. These 
custom functions are defined in a local namespace “urn:neien-scripts” (shown 
below). 
If these custom functions are needed, you must add the following namespace 
definition in the Schematron rule file: 
 
 <ns prefix="neien" uri="urn:neien-scripts"/> 
  To increase performance and efficiency, the QA server uses a compiled version 
of the same scripts which has a different namespace. To use the compiled 
version, the following namespace should be defined: 

<ns prefix="neien2" uri="urn:xmldata"/> 
 

3.3 Error Message Format 
 



XKMS Operation Guidance    Page 8 of 15 

Page 8 of 15  5/16/2008 

The Schematron specification does not define an error message format. In the 
Exchange Network, however, we strongly recommend the following format be 
used for all error messages: 
 
[ErrorType] [RuleId]: [Element Full Path]  Error Description – Instruction 
 

• RuleId: This should be the same business rule Id in the business rule 
table. A flow identifier should be attached if the ID is just an integer.  For 
instance, the RuleId for  rule 22 in NEI flow should be NEI22. 

• ErrorType: This is the type of error, defined as Error, Warning, Critical, or 
some custom error level. 

• Element Full Path: This is the complete path with the element name, 
leading to the offending element in the instance document. The complete 
path can be obtained using the <name zvon:fullPath='yes'/> construct 
(see example below). 

• Error Description: This is the description of the error. This part must 
contain the offending value. 

 
The following is an example error description in a Schematron rule: 
 
[Error][AQS23]: <name zvon:fullPath='yes'/> ObservationDate (<value-of 
select="."/>) must be in proper YYYYMMDD format and in the range Jan 1, 
1957 through today. 
 
The following example marks it as a Warning instead: 
 
[Warning][AQS23]: <name zvon:fullPath='yes'/> ObservationDate (<value-
of select="."/>) must be in proper YYYYMMDD format and in the range Jan 
1, 1957 through today. 
 
The Warning error notice usually indicates that the XML element is optional, or 
the offending value is still acceptable by the receiver. 
 
3.4 Schematron Software Developer Kit  
To facilitate development of Schematron rules, we have created a Schematron 
SDK which contains the following components: 
 

1. The basic Schematron v1.5 meta-files. 
2. A compiled Microsoft XSL transformer. 
3. A set of custom extensions to Schematron, including support of table 

lookup and date validation, etc. 
4. Some sample Schematron files. 

 
With this SDK, a developer can write Schematron rules on a desktop computer.   
 



XKMS Operation Guidance    Page 9 of 15 

Page 9 of 15  5/16/2008 

3.4.1 Rule Validation 
 
Once the Schematron rules are created, you can test them using the following 
command in a command prompt: 
 
msxsl.exe  YourSchematronFile zvonSchematron.xsl -o YourStyleSheet.xsl 

 
Where zvonSchematron.xsl is the Meta style sheet for Schematron, which is 
included in the SDK. The command transforms the Schematron rule file to an 
XSLT style sheet. 
 
If there is no error, you can then transform an XML document to an error file 
using the command below: 
 
msxsl.exe  XMLInstanceDocument.xml YourStyleSheet.xsl -o ErrorFile.txt 
 
 

 
This is often called the second phase transformation. The XML instance 
document is valid if the ErrorFile.txt is empty. Otherwise, the ErrorFile.txt should 
contain error and warning messages. 
 
Note that any style sheet errors or system errors will be printed directly to the 
screen. 
 

3.4.2 Debugging Schematron Rules 
 
The best way to check if Schematron rules are functioning properly is to create 
an XML instance document that triggers each and every rule, and a clean XML 
document that passes all the rules. 
 
Typically, if a rule could not be triggered, it could be one of the following issues: 
 

• The context is incorrect. 
• The namespace of the target XML element is missing or incorrect. 
• The condition in the assertion always evaluates to true. 
• The value in the XML document is correct. 

 
One strategy in dealing with a faulty Schematron rule is to isolate it from all 
others. This can be done by creating a simple Schematron file that contain only 
the problematic rule, and then using it to check against an instance document. 
 



XKMS Operation Guidance    Page 10 of 15 

Page 10 of 15  5/16/2008 

4 Schematron Extensions 
In order to perform operations that are not available in XPath, we created a set of 
extension functions. These functions support database queries, regular 
expressions, and string format validations. These are included in the custom.xsl 
file. 
 
This section defines the custom functions and discusses their uses. Note that the 
custom function list may be subject to changes, and additional functions may be 
introduced in the future. 
 
4.1 Regular Expression Support 
 

4.1.1 Function 
     Public Function CheckExpression(pattern, value) 
 

4.1.2 Parameters 
• Pattern: The regular expression pattern a value must meet. 
• Value: The value in the XML document to check against. 

4.1.3 Description 
This function checks a value in an XML document against a regular expression. It 
returns a true response if the value satisfies the expression, and returns a false 
response for values that don’t satisfy the requirements. 
 
This function uses a Microsoft RegExp object in Visual Basic. For information 
about regular expression syntax and usage, please refer to the Regular 
Expression Syntax and the Introduction of Regular Expressions. 
 
4.2 Database Lookup 

4.2.1 Function 
Public Function CheckExist(dsn, sql, name, value) 

 

4.2.2 Description 
This function checks whether a value exists in a result set selected by an SQL 
statement. The function returns true if the specified value exists otherwise it will 
return a false. 
 
Note that this function caches the result set if the name parameter is not empty. 



XKMS Operation Guidance    Page 11 of 15 

Page 11 of 15  5/16/2008 

4.2.3 Parameters 
• DSN: The ODBC data source name. You can configure the DSN using the 

ODBC manager in the Control Panel.  
• SQL: A SQL Query statement that retrieves a list of values from a 

database table. The select statement typically should contain a single 
column name. 

• NAME: An identifier for the retrieved results. The SQL statement will only 
be executed once when the function is called the first time. 

• Value: The value in an XML document to be verified. 

4.2.4 Example 
 
<assert test="neien2:CheckExist('NEILookup', 'select FIPS_ST_CTY from          
StateCountyFIPSCode','FIPSCode', ‘NEI:CountyStateFIPSCode’)"> 
   [Error][NEI31]: <name zvon:fullPath="yes"/>: CountyStateFIPSCode has 
an invalid value (<value-of select="."/>) according to the lookup 
table. 
</assert> 
 
4.3 Current Date 

4.3.1 Function 
Public Function GetCurrentDate(format) 

4.3.2 Parameter 
Format: The format for the date. The default is  
    %Y-%m-%d 

4.3.3 Description 
The function retrieves the current date and returns it as a string. 

 
 
4.4 Dynamic Date Validation 

4.4.1 Function 
Public Function CheckDate(dateValue, format, minDate, maxDate, 
offsetValue) 
 

4.4.2 Description 
This function checks a date element in the XML document. It verifies that the 
date is in a specific format, and the date is within a specified range. 

4.4.3 Parameters 
• DateValue: The date value to be checked. 



XKMS Operation Guidance    Page 12 of 15 

Page 12 of 15  5/16/2008 

• Format: The valid format for the date. YYYY, MM, DD are used to 
represent year, month and day respectively. 

• MinDate: The minimum date value. -1 means not specified and Today 
means the current date. 

• MaxDate: The maximum date value.  -1 means not specified and Today 
means the current date. 

• offsetValue: The offset value of the Today’s date. It can be negative or 
positive. The value is added to the maxDate or MinDate, if ‘Today’ is used. 

 
 

4.4.4 Example 
 
The following assertion makes sure the SiteTerminateDate is a valid date in 
YYYYMMDD format, and it is between 1/1/1957 and 1 year beyond today. 
 
<assert test="neien:CheckDate(./aqs:SiteTerminateDate,'YYYYMMDD', 
'19570101', 'Today', 10000)">  
[Error][AQS21]: <name zvon:fullPath='yes'/> SiteTerminatedDate (<value-
of select="."/>) must be in proper YYYYMMDD format and in the range 
Jan. 1, 1957 through 1 year beyond today and later than 
SiteEstablishedDate (<value-of select="../aqs:SiteEstablishedDate"/>). 
</assert> 
Note that the offset is added to an integer expression of today’s date in 
YYYYMMDD format. If today is 2/28/2007, then the integer expression is 
20070228, it becomes 20080228 if 10000 is added. 
 
4.5 Data Quality Assurance Services 
 
The QA service is a set of web services for both XML schemas and Schematron 
validations. The services definitions are available at: 
 
https://tools.epacdxnode.net/xml/validator.wsdl 
https://tools.epacdxnode.net/xml/validatorex.wsdl 
 
 
The services defined in the second WSDL file are more suitable for machine to 
machine data validations. 
 
The QA server also provides a web interface for online real-time document 
validations which allows users to check document validity using a web browser. 
The following sections discuss how to use the browser tool. 
 
The QA server web interface is available at https://tools.epacdxnode.net. Users 
of the tool must have a valid Network Authentication and Authorization Services 
(NAAS) account to access the services. 
 



XKMS Operation Guidance    Page 13 of 15 

Page 13 of 15  5/16/2008 

4.5.1 Using QA Server for Schema Validation 
 
 
First type in the address, https://tools.epacdxnode.net, in a web browser URL, 
and click on the Retrieve button. You should see some machine generated web 
forms. One of the forms is called SchemaValidate, and is shown below (figure 1): 
 
Figure 1: Sample QA server page for schema validation 

 
 
The QA server form is for Schema validation and it requires the following 
parameters: 
 

• userID/password: This should be your NAAS account ID and password. 
• DocumentType: The type of document to be validated. This document 

should be associated with an XML schema set. You can select the 
document type from the dropdown list.  

• xmlDocument: The document to be validated. Click on the Browse button 
to select a document. This can be an XML document, or a compressed 
XML document in ZIP format. It is recommended that an XML document 
be compressed to save time and network bandwidth. 

• docFormat: The format of your document. This can be in either an XML 
or ZIP format. 

• sendResultTo: A valid email address where validation result can be sent. 
This parameter is required for large payloads. 

 
Click the Invoke button when all the parameters are entered. The server will 
return the validation result if the file size is relatively small. It returns a transaction 
ID if the document is too large to be handled in a short period of time. It will send 
the final result to the email address provided in such a case. 

 
It is recommended that a document is verified using the Schema Validator first 
before using the Schematron Validator, which is discussed in the next sections. 



XKMS Operation Guidance    Page 14 of 15 

Page 14 of 15  5/16/2008 

4.5.2 Using QA Server for Schematron Validation 
 
The same web page also contains a form for Schematron validation called 
SchematronValidate, and is shown below (figure 2):  
 
Figure 2: Sample QA server page for Schematron validation 

 
 
The Schematron validation form has nearly the same parameters as the XML 
schema validation form: 
 

• userID/password: This should be your NAAS account ID and password. 
• DocumentType: The type of document to be validated. This is associated 

with a set of Schematron rules. You can select it from the dropdown list. 
The document type is not supported if it is not listed in the dropdown 
menu. 

• xmlDocument: The document to be validated. Click on the Browse button 
to select a document. It can be an XML document or a compressed XML 
document in ZIP format. It is recommended that an XML document be 
compressed to save time and network bandwidth. 

• docFormat: The format of your document. It can be in either XML or ZIP 
format. 

• sendResultTo: A valid email address where validation result can be sent. 
This parameter is required for large payloads. 

 
 

4.5.3 Deploying New Schematron Rules 
 
[This section is for QA server administrators and operators] 
 
The QA service is a generic web service that can support any Schematron 
validations without programming. However, a new set of Schematron rules must 
be configured before it can be made available to users.  



XKMS Operation Guidance    Page 15 of 15 

Page 15 of 15  5/16/2008 

 
The following is a simple process for deploying new Schematron rules: 
 

1. Drop the new Schematron file to the SCHEMATRON subdirectory under 
the HDOC directory. 

2. Add one entry to the server configuration file to publish it as a new 
documentType: 
     documentTypeRules=/Schematron/YourSchematronFile 
 
Where documentType is the type of document to which the rules apply. It 
is typically the dataflow name. 

3. Edit the validator.wsdl and validator.wsdl to add a new SchematronType. 
This will be displayed in the dropdown menu by the server. 

 
 

4.5.4 Adding Database Lookup Functionality 
 
As discussed in the previous sections, the Exchange Network Schematron 
Extension supports validating data from a lookup table using the CheckExist 
function. For this to work, ODBC connections must be created: 
 

1. Go to the Control Panel and then the Administrative Tools. 
2. Double click on the Data Sources icon. Under the System DSN click the 

Add button to add a new ODBC data source. 
3. Choose a database driver as appropriate for you database. 
4. Give a Data Source Name (DSN) for your database tables. For local 

lookup databases, you should also select the file that contains the lookup 
tables. 

 
The DSN must match to what are being used in the Schematron rules. 
 

5 References 
• Schematron Specification and References, 

http://www.schematron.com,  
• Validating XML With Schematron, Chimezie,Ogbuji, xml.com, Nov. 22, 

2000. 
• XML Path Language Version 1.0, James Clark and Steve DeRose, W3C 

Recommendation, Nov. 16, 1999 
• XSL Transformations Version 1.0. James Clark, W3C 

Recommendation, Nov. 16, 1999. 
 
 


