[image: image23.wmf]

[image: image24.wmf]

User Documentation

Flow Processor User’s Guide

FINAL

Prepared for

Exchange Network Partners

June 22, 2007

41 Flow Processor Users Guide

41.1 Background

41.2 Technology Overview

41.2.1 Conceptual Architecture

51.2.1.1 Retrieve Configuration Data

51.2.1.2 Extract Source Data Into XML

61.2.1.3 Transform Source XML Data

61.2.1.4 Export Final Payload

61.2.2 Flow Processor Engine Processing Steps

71.3 Flow Processor Data Model

81.3.1 The FP_OPTION Table

101.3.2 The FP_SUBMITTAL_MODEL Table

131.3.3 The FP_SUBMITTAL_MODEL_PRESQL Table

141.3.4 The FP_SUBMITTAL_MODEL_SQL Table

141.3.5 The FP_SUBMITTAL Table

161.3.6 The FP_SUBMITTAL_EXPORT Table

171.3.7 The FP_SUBMITTAL_EXPORT_XREF Table

181.3.8 The FP_SUBMITTAL_EXPORT_PARAM Table

191.3.9 The FP_SUBMITTAL_PREPROCESS Table

191.3.10 The FP_SUBMITTAL_PREPROCESS_XREF Table

201.3.11 The FP_SUBMITTAL_PREPROCESS_PARAM Table

222 Flow Processor Package

222.1 Prerequisites for Using the Flow Processor

222.1.1 Java SDK or Runtime version 1.4.2

222.1.2 Windows Operating System

222.1.3 Package is a Zip File

222.1.4 Access to Relational Database Instance

222.2 Flow Processor Package Contents

222.2.1 Directory Structure

262.3 Installing the Flow Processor Configuration and Examples Data

262.3.1 Flow Processor Schema

262.3.2 Examples Database Schema

262.3.3 Customizing the Configuration

262.3.3.1 Configuration for the Flow Processor Schema

272.3.3.2 Configuration for the Examples schema

282.4 Flow Processor Examples

282.4.1 Example 1: Raw XML Data Extraction

282.4.1.1 Configuration Breakdown

322.4.1.2 Running Example 1

332.4.1.3 Reviewing the Output

352.4.2 Example 2: Exchange Network Submission

352.4.2.1 Configuration Breakdown

392.4.2.2 Running Example 2

402.4.2.3 Reviewing the Output

432.4.3 Example 3: Building an HTML Report

432.4.3.1 Configuration Breakdown

472.4.3.2 Running Example 3

482.4.3.3 Reviewing the Output

1 Flow Processor Users Guide

This document provides an overview of the Flow Processor and guidance on how this tool can be used. It is intended to be a source for anyone wishing to use the Flow Processor as a stand-alone tool or integrate it into existing applications.

1.1 Background

The Flow Processor is a tool that was first developed in December of 2004 while building the Facility Registry System (FRS) Central Data Exchange (CDX) network flow for the New Jersey Department of Environmental Protection (NJDEP). Since then, it has been used by NJDEP to build the RCRA Handler and RCRA Permitting CDX data flows. Using the Flow Processor, NJDEP has also developed several other CDX flows using only their own departmental staff. Over the last two years, the Flow Processor has been used by several other states to implement FRS and RCRA CDX data flows.

The Flow Processor has been provided as a freely available tool to Exchange Network partners by Sherry Driber of New Jersey DEP. For any questions regarding the use of the Flow Processor at NJDEP, please contact Mike Matsko at Mike.Matsko@dep.state.nj.us.

1.2 Technology Overview

The Flow Processor is an extraction and transformation tool written in Java.

The Flow Processor is an extraction and transformation tool written in Java. It can operate as a standalone application executed from a Windows command prompt or Unix shell script. The examples contained within the Flow Processor package operate as a command line utility. While the Flow Processor is a Java tool, the concepts can easily be transferred to .NET or any other technology.

1.2.1 Conceptual Architecture

Exhibit 1 below provides a graphical representation of the Flow Processor’s conceptual architecture. This exhibit represents an example of the Flow Processor building a submittal to a Central Data Exchange node.
[image: image25.wmf]Exhibit 1 – Flow Processor Conceptual Architecture
1.2.1.1 Retrieve Configuration Data
The Flow Processor stores configuration data within its own database tables. This configuration data describes a Flow. A Flow has the following characteristics:

· A Flow has a unique name (sometimes referred to as submittal code).

· A Flow has one primary query which generally performs some search or filter against the Source database.

· A Flow has one or more detail queries that execute for each row returned from the primary query.

· A Flow may contain pre and post processors which operate prior to data extraction (in the case of pre-processors) and after the transformation step (in the case of post-processors).

· A Flow may contain a XML stylesheet to transform the source data into a final output format.

There are finer configuration details contained within the database tables which are described in later sections.
1.2.1.2 Extract Source Data Into XML

The primary query for a Flow is executed against the source database and usually produces multiple rows which act as “primary key”. Every detail query for a Flow is executed once for each row returned by the primary query. Each column from the primary query can be used as “bind” variables in any detail queries.

I mentioned that the primary query usually returns more than one row. However, sometimes you may want to execute only the detail queries for a Flow one and only one time. This approach is usually done to avoid executing a significant number of simpler queries in favor of more complicated detailed queries.

Guarantee one and only one row from a primary query

The source data of the Flow creates an XML document.

In order to guarantee that the primary query return one and only one row, assign the primary query the value of “SELECT ‘X’ FROM DUAL.

The data retrieved from the detail queries of the Flow builds an XML document. The SQL column names (or column aliases) become the XML element names and the column value is that element’s value. Exhibit 2 illustrates this process.

[image: image26.wmf]Exhibit 2 – Flow Processor Source Data Retrieval Process
1.2.1.3 Transform Source XML Data

The third phase of the Flow Processor engine is to apply an XML stylesheet (XSLT) to the source XML document. The transformation process is actually an optional step. If no XSLT is defined for the Flow then the resulting output of the Flow is the source XML document.

Transformation can result in many different formats, not just XML

When the Flow Processor is used as a tool to support CDX processing, the transformation process almost always translates the source XML document into another XML document which corresponds to a particular Exchange Network node schema (e.g., FRS). However, the XSLT can easily transform the source XML document into other formats like HTML (for reports), PDF, flat files, etc...
1.2.1.4 Export Final Payload

After XSLT transforms the Flow’s data into the final payload (assumed to be XML in Exhibit 1 above), one or more optional post processors can be applied to that payload. A post processor is also known as an Export Manager since the post processor often exports the resulting data to other places. In Exhibit 1, an Export Manager is applied to the Flow which submits the final XML payload to a CDX node. Later you will find out how to specify the node destination parameters in a configurable way.

1.2.2 Flow Processor Engine Processing Steps

Exhibit 3 illustrates the processing steps for the Flow Processor engine including the execution of pre processors.

[image: image27.wmf]Exhibit 3 – Engine Processing Steps

Zero or more pre processors can be executed prior to the data extraction from the source database. Some useful applications for a pre processor are:

· Error Logger – Checks can be made prior to extracting the data to ensure business rules are met. If business rules are violated, logging messages can be written to a table or rows of the source database flagged as error.

· Sequence Generator – Perhaps the target system for the final payload (like CDX) requires its own unique sequence numbers that differ from the source database. DDL statements in a pre processor could create these sequence numbers and store it for selection during the data extraction step.
1.3 Flow Processor Data Model

The Flow Processor is controlled by the configuration information contained within its database tables. Exhibit 4 represents the Entity Relationship diagram for the Flow Processor data model. The database columns which are in bold text represent mandatory columns.

[image: image1.emf]FP_SUBMITTAL

PK SUBMITTAL_CODE

SUBMITTAL_DESC

FK1 SUBMITTAL_MODEL_CODE

USE_LAST_RUN_DATE_FLAG

LAST_RUN_DATE

CACHE_FLAG

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_MODEL_SQL

PK,FK1 SUBMITTAL_MODEL_CODE

PK RETRIEVE_SQL_ID

RETRIEVE_SQL_DESC

INTERMEDIATE_LOCAL_ROOT_TAG

ORDER_NUM

ACTIVE_FLAG

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_MODEL

PK SUBMITTAL_MODEL_CODE

SUBMITTAL_MODEL_DESC

CDX_DATA_FLOW_CODE

CDX_DOC_TYPE_CODE

CDX_FLOW_SCHEMA

CDX_FLOW_OPERATION

CDX_DOC_TEMPLATE_FILENAME

CDX_DATA_SET_XSLT_FILENAME

OUTPUT_BASE_FILENAME

OUTPUT_ROOT_OPEN_TAG

OUTPUT_ROOT_CLOSE_TAG

SEARCH_SQL_ID

INTERMEDIATE_ROOT_TAG

USER_LAST_UPDT

TMSP_LAST_UPDT

PROCESS_TEMP_ROWS

TEMP_DIRECTORY

CDX_DATA_SERVICE

XML_VALIDATE_FLAG

FP_SUBMITTAL_EXPORT

PK SUBMITTAL_EXPORT_CODE

SUBMITTAL_EXPORT_DESC

EXPORT_MANAGER_CLASS_NAME

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_PREPROCESS

PK SUBMITTAL_PREPROCESS_CODE

SUBMITTAL_PREPROCESS_DESC

PREPROCESS_MANAGER_CLASS_NAME

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_PREPROCESS_PARAM

PK,FK1 SUBMITTAL_PREPROCESS_CODE

PK PARAM_NAME

PARAM_DESC

VALUE_STRING

VALUE_NUMBER

VALUE_DATE

ACTIVE_FLAG

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_EXPORT_PARAM

PK,FK1 SUBMITTAL_EXPORT_CODE

PK PARAM_NAME

PARAM_DESC

VALUE_STRING

VALUE_NUMBER

VALUE_DATE

ACTIVE_FLAG

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_MODEL_PRESQL

PK,FK1 SUBMITTAL_MODEL_CODE

PK UPDATE_SQL_ID

UPDATE_SQL_DESC

ORDER_NUM

ACTIVE_FLAG

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_OPTION

PK OPTION_NAME

OPTION_DESC

VALUE_STRING

VALUE_NUMBER

VALUE_DATE

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_EXPORT_XREF

PK,FK1 SUBMITTAL_CODE

PK,FK2 SUBMITTAL_EXPORT_CODE

ORDER_NUM

ACTIVE_FLAG

USER_LAST_UPDT

TMSP_LAST_UPDT

FP_SUBMITTAL_PREPROCESS_XREF

PK,FK2 SUBMITTAL_PREPROCESS_CODE

PK,FK1 SUBMITTAL_CODE

ORDER_NUM

ACTIVE_FLAG

USER_LAST_UPDT

TMSP_LAST_UPDT

Exhibit 4 – Flow Processor Data Model
1.3.1 The FP_OPTION Table

The FP_OPTION table defines system preferences for the Flow Processor. The table definition and table data are described below.

Exhibit 5 - FP_OPTION Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	OPTION_NAME
	VARCHAR2(50)
	Y
	Y
	The name of the FP option.

	OPTION_DESC
	VARCHAR2(200)
	Y
	N
	The description of the FP option.

	VALUE_STRING
	VARCHAR2(4000)
	N
	N
	The String value of the FP option if the value is a string.

	VALUE_NUMBER
	NUMBER(20,10)
	N
	N
	The Number value of the FP option if the option is a number.

	VALUE_DATE
	DATE
	N
	N
	The Date value of the FP option if the option is a date.

Exhibit 6 - Data for the FP_OPTION Table

	Option Name
	Current Value
	Option Description

	FP_DOC_TEMPLATE_TAG_DATA_SERVICE
	<%Insert Data Service Here%>
	The tag used in the Node Document template that is replaced with the data service

	FP_DOC_TEMPLATE_TAG_DATA_SET
	<%Insert Data Set Here%>
	The tag used in the Node Document template that is replaced with the data set of this Flow.

	FP_DOC_TEMPLATE_TAG_TIMESTAMP
	<%Insert Timestamp Here%>
	The tag used in the Node Document template that is replaced with a timestamp.

	FP_DOC_TEMPLATE_TAG_TIMESTAMP _FORMAT
	yyyy-MM-dd'T'HH:mm:ss.SSS
	The format that is used for the timestamp inserted into the Node Document in place of the tag defined by FLOW_DOC_TEMPLATE _TAG_TIMESTAMP.

	FP_DOC_TEMPLATE_TAG_ID
	<%Insert Id Here%>
	The tag used in the Node Document template that is replaced with a unique id.

	FP_DOC_TEMPLATE_TAG_PAYLOAD_ OPERATION
	<%Insert Payload Operation Here%>
	The tag used in the Node Document template that is replaced with the Payload Operation.

	FP_XML_DECLARATION
	<?xml version="1.0"?>
	The XML declaration to be used for all XML documents generated by the Flow Processor.

	FP_SUBMISSION_FILENAME_ TIMESTAMP_FORMAT
	yyyy-MM-dd_HH-mm-ss
	The format of the timestamp appended to the OUTPUT_BASE_FILENAME field in the FLOW_SUBMITTAL table.

	FP_DOC_TEMPLATE_TAG_SCHEMA
	<%Insert Schema Here%>
	The tag used in the Node Document template that is replaced with the name of the XML document's schema that is in the Payload.

1.3.2 The FP_SUBMITTAL_MODEL Table

The FP_SUBMITTAL_MODEL table is the primary table for defining the data of the Flow Processor. Specifically, it provides configurable information which allows the Flow Processor to:

· Extract the necessary data for the flow,

· Translate that data into the appropriate XML format for the flow,

· Package the XML payload into the appropriate format for submittal

Exhibit 7 - FP_SUBMITTAL_MODEL Definition
	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_MODEL_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing the “model” for a particular flow. This refers mainly to the primary key query and subsequent child queries that are executed on behalf of this “model”.

(e.g., “RCRA->GetAllHandlerData”)

	SEARCH_SQL_ID
	VARCHAR2(100)
	Y
	N
	The iBatis SQL identifier for the primary key query that should be executed for this submittal model.

For every row returned by the primary key query, all child queries within the FP_SUBMITTAL_MODEL_SQL table are executed which correspond to this SUBMITTAL_MODEL_CODE.

(e.g., “FS.Search.RCRA.GetAllHandlerData”)

	INTERMEDIATE_ROOT_TAG
	VARCHAR2(30)
	Y
	N
	The root element of the intermediate XML generated by the Flow Processor before any XSLT transformation occurs.

(e.g., “njems-handler”)

	OUTPUT_BASE_FILENAME
	VARCHAR2(100)
	Y
	N
	Specifies the root file name for the XML generated by the Flow Processor prior to appending any timestamp.

(e.g., “njems-rcra-HandlerAllData”)

	SUBMITTAL_MODEL_DESC
	VARCHAR2(200)
	N
	N
	A free-form text description of this submittal model.

	CDX_DATA_FLOW_CODE
	VARCHAR2(50)
	N
	N
	The code used to identify the type of Exchange flow to EPA’s CDX node.

(e.g., “RCRA”)

	CDX_DOC_TYPE_CODE
	VARCHAR2(50)
	N
	N
	The code used to specify the file type being sent to the CDX node.

(e.g., “XML” or “ZIP”)

	CDX_FLOW_SCHEMA
	VARCHAR2(100)
	N
	N
	The name of the XML schema to which the final XML output should conform.

(e.g., “EN_RCRA_HazardousWastePermitSubmission_v1.0.xsd”)

	CDX_FLOW_OPERATION
	VARCHAR2(100)
	N
	N
	The Flow Control operation being attempted during the flow. This is replaced in the Document Header section of the final XML being sent to the Exchange Node. This code instructs CDX how to process the contents of the payload XML.

(e.g., “RCRA-FullReplaceByHandler|PM”

	CDX_DOC_TEMPLATE_FILENAME
	VARCHAR2(500)
	N
	N
	Specifies the full path name for the location of the template file used to generate the complete XML submission to CDX. This is just a template with parameters whose values will be merged by the Flow Processor during execution.

(e.g., “/opt/appsconfig/props/dep/RCRA/fs-rcra-handler-doc-template.txt”

	CDX_DATA_SET_XSLT_FILENAME
	VARCHAR2(500)
	N
	N
	The full path location of the XML Stylesheet used to transform the Flow Processor XML output into the final payload XML format.

(e.g., “/opt/appsconfig/props/dep/RCRA/fs-rcra-handler.xsl”)

	OUTPUT_ROOT_OPEN_TAG
	VARCHAR2(2000)
	N
	N
	Specifies the root element’s open tag for the final XML generated by the Flow Processor.

It is important to mention that for schema validation to occur, the open tag must include all attributes necessary for specifying the location of the XML schema to use during validation.

(e.g., <HazardousWasteHandlerSubmission xmlns:facid="http://www.epa.gov/xml" xsi:schemaLocation="urn:us:net:exchangenetwork:RCRA:RCRA_C:1:0 /opt/appsconfig/props/dep/RCRA/RCRA_V1.0r5/EN_RCRA_HazardousWasteHandlerSubmission_v1.0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:us:net:exchangenetwork:RCRA:RCRA_C:1:0">”)

	OUTPUT_ROOT_CLOSE_TAG
	VARCHAR2(50)
	N
	N
	Specifies the root element’s closing tag for the final XML generated by the Flow Processor.

(e.g., “</HazardousWasteHandlerSubmission>”)

	PROCESS_TEMP_ROWS
	VARCHAR2(10)
	N
	N
	A performance parameter which tells the Flow Processor how many primary key rows to process within a single temporary file.

Depending on the size of the temporary file, XSLT transformation can become very expensive. Transforming smaller temporary files is often more efficient.

If no value is provided, then one and only one temporary file is created.

Unless you know a performance problem exists, you should leave this entry null.

 (e.g., 100)

	CDX_DATA_SERVICE
	VARCHAR2(100)
	N
	N
	The CDX service name that gets replaced in the Document Header. This is specific to web services.

(e.g., “GetHandlerData”)

	TEMP_DIRECTORY
	VARCHAR2(500)
	N
	N
	The full path name of the directory used for any temporary files created by the Flow Processor.

(e.g., “/opt/appsconfig/docs/dep/RCRA/”)

1.3.3 The FP_SUBMITTAL_MODEL_PRESQL Table

The FP_SUBMITTAL_MODEL_PRESQL table provides SQL entries for the “model” that are executed prior to the Flow Processor starting the submittal flow.

One example for using this table would be for the RCRA CDX flows. In the case of RCRA, there are INSERT statements that must execute so that unique identifiers are created for any rows which have not yet been sent to RCRAInfo. These entries are then queried by the Flow Processor during its execution.

Exhibit 8 - FP_SUBMITTAL_MODEL_PRESQL Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_MODEL_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing the “model” for a particular flow. This refers mainly to the primary key query and subsequent child queries that are executed on behalf of this “model”.

(e.g., “RCRA->GetAllPermittingData”)

	UPDATE_SQL_ID
	VARCHAR2(200)
	Y
	Y
	The iBatis SQL identifier for the pre-sql to execute. The column is labelled as “Update”, but there is no requirement that the SQL be an update. It can be any SQL statement. This SQL is executed only once.

(e.g., “RCRA.Update.PermitSeqXRef”)

	UPDATE_SQL_DESC
	VARCHAR2(200)
	Y
	N
	The free-text description of the SQL statement.

	ORDER_NUM
	NUMBER(2)
	Y
	N
	Provides the order in which the SQL should be executed.

(e.g., “1”)

	ACTIVE_FLAG
	CHAR(1)
	Y
	N
	An indicator determining whether the SQL statement is active.

(e.g., “Y”)

1.3.4 The FP_SUBMITTAL_MODEL_SQL Table

The FP_SUBMITTAL_MODEL_SQL table provides detailed SQL entries for the “model” that are executed by the Flow Processor for each primary key row returned by the primary key SQL within the FP_SUBMITTAL_MODEL table.

Exhibit 9 - FP_SUBMITTAL_MODEL_SQL Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_MODEL_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing the “model” for a particular flow. This refers mainly to the primary key query and subsequent child queries that are executed on behalf of this “model”.

(e.g., “RCRA->GetAllPermittingData”)

	RETRIEVE_SQL_ID
	VARCHAR2(200)
	Y
	Y
	The iBatis SQL identifier for the detail SQL to execute. This SQL is executed for each row returned by the primary key SQL identified in the FP_SUBMITTAL_MODEL.SEARCH_SQL_ID.

(e.g., “FS.Retrieve.RCRA.PermitUnit”)

	RETRIEVE_SQL_DESC
	VARCHAR2(200)
	Y
	N
	The free-text description of the SQL statement.

	INTERMEDIATE_LOCAL_ROOT_TAG
	VARCHAR2(30)
	Y
	N
	The XML tag used by the Flow Processor to wrap all the data elements returned by this query.

(e.g., “permit-unit”)

	ORDER_NUM
	NUMBER(2)
	Y
	N
	Provides the order in which the SQL should be executed.

(e.g., “1”)

	ACTIVE_FLAG
	CHAR(1)
	Y
	N
	An indicator determining whether the SQL statement is active.

(e.g., “Y”)

1.3.5 The FP_SUBMITTAL Table

The FP_SUBMITTAL table is the highest-level table for defining a submittal flow. That is, the SUBMITTAL_CODE defined in this table is used to represent an entire submittal flow.

For example, the “Submit->RCRA->HandlerData” submittal_code defines the flow control for the entire RCRA Handler submittal flow. By associating it with the “RCRA->GetAllHandlerData” submittal_model_code, this instructs the Flow Processor on

· the data to retrieve,

· the format of the final Handler XML payload, and

· the format of the final XML CDX document.

The submittal code is also associated with Pre and Post processors that extend the functionality of the Flow Processor. This is explained in future table definitions.

Exhibit 10 - FP_SUBMITTAL Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing an actual Exchange submittal flow. A submittal is associated with one and only one “model” which provides the data associated with the flow.

(e.g., “Submit->RCRA->HandlerData”)

	SUBMITTAL_DESC
	VARCHAR2(200)
	Y
	N
	A free-form text description of this submittal flow.

	SUBMITTAL_MODEL_CODE
	VARCHAR2(50)
	Y
	N
	The “model” code used to define the data required by this submittal flow.

(e.g., “Query->RCRA->GetAllHandlerData”)

	CACHE_FLAG
	CHAR(1)
	Y
	N
	An indicator determining whether an instance of the Flow Processor for this submittal flow should be cached in memory for future use. This is a performance enhancement so that multiple executions of the Flow Processor do not have to requery all the configuration information.

It is very important to note that this performance does come at a price. Since the Flow Processor is cached in memory, any modifications to the database configuration tables will not take effect unless the application server is restarted.

Unless you know that more than 10 submittal flows are regularly executing in parallel and almost constantly, it would be worth leaving this flag set to “N”. The time it takes for the Flow Processor to initialize itself with configuration data is only a few seconds.

(e.g., “N”)

	USE_LAST_RUN_DATE
	CHAR(1)
	N
	N
	An indicator that determines whether this submittal flow will use the LAST_RUN_DATE column value as a parameter during the next execution of the Flow Processor. This is usually done if the “model” queries use a last_run_date parameter so that only data elements are queried which are after the last time the Flow Processor executed for this submittal flow.

Also, if this indicator is set to “Y”, the Flow Processor will update the LAST_RUN_DATE column with the date/time of the last execution of this submittal flow.

(e.g., “Y”)

	LAST_RUN_DATE
	DATE
	N
	N
	The date/time of the last execution of the Flow Processor for this submittal flow. It is only updated if the USE_LAST_RUN_DATE is set to “Y”.

It is a good idea to always default the LAST_RUN_DATE value to a valid date. If the USE_LAST_RUN_DATE is set to “Y” with no LAST_RUN_DATE, the Flow Processor might error with an invalid date format.

(e.g., “01/01/2005”)

1.3.6 The FP_SUBMITTAL_EXPORT Table

The FP_SUBMITAL_EXPORT table provides the ability for introducing one or more “Post Processors” to the Flow Processor. While the current set of “post processors” deal with exporting the data generated by the Flow Processor, this does not mean that it is limited to only export functionality. This table provides an easy mechanism for extending the functionality of the Flow Processor without modifying its code.

Exhibit 11 - FP_SUBMITTAL_EXPORT Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_EXPORT_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing an Export, or post-flow, Processor.

(e.g., “CDX Submit”)

	SUBMITTAL_EXPORT_DESC
	VARCHAR2(200)
	Y
	N
	A free-form text description of this submittal export processor.

	EXPORT_MANAGER_CLASS_NAME
	VARCHAR2(100)
	Y
	N
	The fully-qualified Java class name (including package) of the Export processor. All Export Manager processors must provide an implementation of the FlowExportManager interface.

(e.g., “com.cgiams.esl.fp.em.CDXExportManager”)

1.3.7 The FP_SUBMITTAL_EXPORT_XREF Table

The FP_SUBMITAL_EXPORT_XREF table associates Export Managers with submittal flows. This allows zero or more Export Managers to execute after a successful completion of a submittal flow.

Exhibit 12 - FP_SUBMITTAL_EXPORT_XREF Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing an actual Exchange submittal flow. A submittal is associated with one and only one “model” which provides the data associated with the flow.

(e.g., “Submit->RCRA->HandlerData”)

	SUBMITTAL_EXPORT_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing an Export, or post-flow, Processor.

(e.g., “CDX Submit”)

	ORDER_NUM
	NUMBER(2)
	Y
	N
	A sequence number indicating the order in which the Export Manager should execute.

(e.g., “1”)

	ACTIVE_FLAG
	CHAR(1)
	Y
	N
	An indicator determining whether the Export Manager is active.

(e.g., “Y”)

1.3.8 The FP_SUBMITTAL_EXPORT_PARAM Table

The FP_SUBMITTAL_EXPORT_PARAM table defines system preferences for an Export Manager class. The table definition and table data are described below.

Exhibit 13 - FP_SUBMITTAL_EXPORT_PARAM Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_EXPORT_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing an Export, or post-flow, Processor.

(e.g., “CDX Submit”)

	PARAM_NAME
	VARCHAR2(50)
	Y
	Y
	The name of the parameter.

	PARAM_DESC
	VARCHAR2(200)
	Y
	N
	The description of the parameter.

	VALUE_STRING
	VARCHAR2(4000)
	N
	N
	The String value of the parameter if the value is a string.

	VALUE_NUMBER
	NUMBER(20,10)
	N
	N
	The Number value of the parameter if the option is a number.

	VALUE_DATE
	DATE
	N
	N
	The Date value of the parameter if the option is a date.

	ACTIVE_FLAG
	CHAR(1)
	Y
	N
	An indicator determining if the parameter is active or not.

Exhibit 14 - Example Data for “CDX Submit” Submittal Export Code

	Option Name
	Current Value
	Option Description

	UID
	Cdx
	The user name used to log into CDX to submit the data set.

	DATA FLOW CODE COLUMN NAME
	CDX_DATA_FLOW_CODE
	The name of the column that stores the data flow code for the Flow Submittal.

	PWD
	Test
	The password for the user id defined by UID parameter used to log into CDX to submit the data set.

	DOC TYPE CODE COLUMN NAME
	CDX_DOC_TYPE_CODE
	The name of the column that stores the document type code for the Flow Submittal.

	URL
	https://test.epacdxnode.net/cdx/services/NetworkNodePortType_V10
	The URL of CDX to submit the data to.

1.3.9 The FP_SUBMITTAL_PREPROCESS Table

The FP_SUBMITTAL_PREPROCESS table provides the ability for introducing one or more “Pre Processors” to the Flow Processor. Any “Pre Processor” that is associated with a submittal flow is executed in its entirety prior to executing the actual submittal flow.

Exhibit 15 - FP_SUBMITTAL_PREPROCESS Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_PREPROCESS_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing a Pre Processor.

(e.g., “PreSQLProcessing”)

	SUBMITTAL_PREPROCESS_DESC
	VARCHAR2(200)
	Y
	N
	A free-form text description of this submittal pre-processor.

	PREPROCESS_MANAGER_CLASS_NAME
	VARCHAR2(100)
	Y
	N
	The fully-qualified Java class name (including package) of the Pre processor. All Pre-Submittal processors must provide an implementation of the FlowPreProcessManager interface.

(e.g., “com com.cgiams.esl.fp.pp.DefaultFPPreProcessManager”)

1.3.10 The FP_SUBMITTAL_PREPROCESS_XREF Table

The FP_SUBMITTAL_PREPROCESS_XREF table associates PreProcess Managers with submittal flows. This allows zero or more PreProcess Managers to execute before a submittal flow.

Exhibit 16 - FP_SUBMITTAL_PREPROCESS_XREF Definition

	Column Name
	Data Type
	Req.
	Primary Key
	Description

	SUBMITTAL_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing an actual Exchange submittal flow. A submittal is associated with one and only one “model” which provides the data associated with the flow.

(e.g., “Submit->RCRA->HandlerData”)

	SUBMITTAL_PREPROCESS_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing the PreProcessor.

(e.g., “PreSQLProcessing”)

	ORDER_NUM
	NUMBER(2)
	Y
	N
	A sequence number indicating the order in which the PreProcess Manager should execute.

(e.g., “1”)

	ACTIVE_FLAG
	CHAR(1)
	Y
	N
	An indicator determining whether the PreProcessor Manager is active.

(e.g., “Y”)

1.3.11 The FP_SUBMITTAL_PREPROCESS_PARAM Table

The FP_SUBMITTAL_PREPROCESS_PARAM table defines system preferences for a PreProcess Manager class. The table definition and table data are described below.

	Column Name
	Data Type
	Required
	Primary Key
	Description

	SUBMITTAL_PREPROCESS_CODE
	VARCHAR2(50)
	Y
	Y
	A code value representing a PreProcessor.

(e.g., “PreSQLProcessing”)

	PARAM_NAME
	VARCHAR2(50)
	Y
	Y
	The name of the parameter.

	PARAM_DESC
	VARCHAR2(200)
	Y
	N
	The description of the parameter.

	VALUE_STRING
	VARCHAR2(4000)
	N
	N
	The String value of the parameter if the value is a string.

	VALUE_NUMBER
	NUMBER(20,10)
	N
	N
	The Number value of the parameter if the option is a number.

	VALUE_DATE
	DATE
	N
	N
	The Date value of the parameter if the option is a date.

	ACTIVE_FLAG
	CHAR(1)
	Y
	N
	An indicator determining if the parameter is active or not.

Exhibit 17 - FP_SUBMITTAL_PREPROCESS_PARAM Definition
There are currently no rows in this table because the only Pre Processor class within the Flow Processor package does not require any parameters.

2 Flow Processor Package

This chapter discusses the contents of the Flow Processor package and walks through the examples of using the Flow Processor.

2.1 Prerequisites for Using the Flow Processor

The following are prerequisites for executing the Flow Processor.

2.1.1 Java SDK or Runtime version 1.4.2

The Flow Processor has been developed and tested using the 1.4.2_08 version of the JDK. It should work with any version of JDK 1.4.2 but it has not been tested with JDK 1.5.

Although the Flow Processor is expected to work with JDK 1.5.x, it is assumed that the user have a JDK 1.4.2 version installed on his system for running the Flow Processor examples. If you require a Java 1.4 version, please download it here.

Path of Java 1.4.2 Install

Please note the path of a Java Home directory where a 1.4.2 version of Java is installed.

2.1.2 Windows Operating System

The Flow Processor has been implemented in production on UNIX operating systems. For convenience, the Flow Processor package and configuration data assumes that the examples are installed on a system running Windows.

2.1.3 Package is a Zip File

If you do not have software to unzip the .zip file, please download an evaluation copy of WinZip here.

2.1.4 Access to Relational Database Instance

In order to run the Flow Processor examples, you will require access to a relational database. You will also require a user id that has CREATE SCHEMA and CREATE SCHEMA OBJECT rights.

2.2 Flow Processor Package Contents

The Flow Processor package is a zip file containing several directories.

You must unzip the contents of the Flow Processor package zip file directly to the root c:\ directory.

You must unzip the contents of the Flow Processor package zip file directly to the root c:\ directory. Each of the Flow Processor configuration files used in the examples assumes that the c:\FlowProcessorPackage high-level directory is created after unzipping the package.

2.2.1 Directory Structure

The following table provides an overview of these directories and the file contents.

	Directory
	File
	Description

	C:\FlowProcessorPackage
	
	Highest level directory after unzipping package. All other directories will reside under this directory.

	C:\FlowProcessorPackage\
	Flow Processor Users Guide.doc
	This user guide document.

	C:\FlowProcessorPackage\
	Run.bat
	The DOS batch job used to invoke the Flow Processor.

	C:\FlowProcessorPackage\ database
	
	Database scripts for creating the example schema and flow processor schema objects.

	C:\FlowProcessorPackage\ database
	
	Database scripts for creating the example schema and flow processor schema objects.

	C:\FlowProcessorPackage\ database\
	flow-processor-create-owner.sql
	Creates the Flow Processor schema owner.

	C:\FlowProcessorPackage\ database\
	flow-processor-schema.sql
	Creates the FP schema objects. The tables store the configuration information used by the Flow Processor.

	C:\FlowProcessorPackage\ database\
	flow-processor-dataload.sql
	Loads the configuration data used by the examples.

	C:\FlowProcessorPackage\ database\
	jpetstore-create-owner.sql
	Creates the example schema owner which represents the “source” of the data upon which the Flow Processor acts.

	C:\FlowProcessorPackage\ database\
	jpetstore-oracle-schema.sql
	Creates the example schema owner objects.

	C:\FlowProcessorPackage\ database\
	jpetstore-oracle-dataload.sql
	Loads the source data for the examples.

	C:\FlowProcessorPackage\ doc
	
	The directories containing the JavaDocs for the Flow Processor.

	C:\FlowProcessorPackage\ doc\
	Index.html

	The root file for launching the JavaDocs.

	C:\FlowProcessorPackage\ ini
	
	Contains the Windows initialization files used by the Flow Processor command line utility for running the examples.

	C:\FlowProcessorPackage\ ini\
	fp-cmd-line-example1.ini
	Initialization file for example 1.

	C:\FlowProcessorPackage\ ini\
	fp-cmd-line-example2.ini
	Initialization file for example 2.

	C:\FlowProcessorPackage\ ini\
	fp-cmd-line-example3.ini
	Initialization file for example 3.

	C:\FlowProcessorPackage\ lib-rt
	
	Contains all third party Java libraries for executing the Flow Processor.

	C:\FlowProcessorPackage\ lib-rt\
	Axis.jar
	Apache’s library for web services.

	C:\FlowProcessorPackage\ lib-rt\
	cgi-flow-processor.jar
	The Flow Processor engine and supporting classes.

	C:\FlowProcessorPackage\ lib-rt\
	cgi-node-client-nongui.jar
	The Node 1.1 web service stub classes.

	C:\FlowProcessorPackage\ lib-rt\
	commons-collections.jar
	The Apache Commons Collection library.

	C:\FlowProcessorPackage\ lib-rt\
	commons-dbcp-1-1.jar
	The Apache Database Connection Pooling library.

	C:\FlowProcessorPackage\ lib-rt\
	commons-logging.jar
	The Apache Commons Logging library.

	C:\FlowProcessorPackage\ lib-rt\
	commons-pool-1-1.jar
	The Apache Object Pooling library.

	C:\FlowProcessorPackage\ lib-rt\
	ibatis-common-2.jar
	iBATIS Persitence Layer common libraries.

	C:\FlowProcessorPackage\ lib-rt\
	ibatis-sqlmap-2.jar
	iBATIS SQLMapper libraries.

	C:\FlowProcessorPackage\ lib-rt\
	jaxb-api.jar
	Java XML Binding interface definitions

	C:\FlowProcessorPackage\ lib-rt\
	jaxb-libs.jar
	Java XML Binding libraries

	C:\FlowProcessorPackage\ lib-rt\
	jaxb-impl.jar
	Java XML Binding implementation classes

	C:\FlowProcessorPackage\ lib-rt\
	jax-qname.jar
	Java XML Namespace class

	C:\FlowProcessorPackage\ lib-rt\
	log4j-1.2.8.jar
	Log4J logging library.

	C:\FlowProcessorPackage\ lib-rt\
	namespace.jar
	Java XML Namespace context class

	C:\FlowProcessorPackage\ lib-rt\
	ojdbc14.jar
	Oracle 9.0.2 JDBC Driver

	C:\FlowProcessorPackage\ lib-rt\
	relaxngDatatype.jar
	Sun’s Relaxing Datatype classes

	C:\FlowProcessorPackage\ lib-rt\
	xercesImpl.jar
	Apache Xerces XML Parsing implementation classes.

	C:\FlowProcessorPackage\ lib-rt\
	xml-apis.jar
	Java XML Parsing interface apis.

	C:\FlowProcessorPackage\ lib-rt\
	xsdlib.jar
	Sun’s schema validator library.

	C:\FlowProcessorPackage\ lic\
	LICENSE.txt
	Apache 2.0 open source license text.

	C:\FlowProcessorPackage\ lic
	NOTICE.txt
	Official notice file stating open source software from Apache is used in the Flow Processor.

	C:\FlowProcessorPackage\ log
	
	The directory where log files are placed from the examples.

	C:\FlowProcessorPackage\ output
	
	The directory where output files from the examples are placed.

	C:\FlowProcessorPackage\ properties
	Each file is mentioned individually within the document so they are not listed here.
	The directory where all configuration files used by the Flow Processor and examples are located.

2.3 Installing the Flow Processor Configuration and Examples Data

This section describes the procedures for installing the Flow Processor configuration schema and the Examples database schema. All database scripts referenced in the following sections are located within the c:\FlowProcessorPackage\database directory.
2.3.1 Flow Processor Schema

The Flow Processor schema contains the configuration information used by the Flow Processor. Using your favorite RDBMS access software, execute the following SQL scripts in the defined order:

1. flow-processor-create-owner.sql
You must run this script as the Flow Processor schema owner

2. flow-processor-schema.sql (You must run this script as the Flow Processor schema owner)

3. flow-processor-dataload.sql (You must run this script as the Flow Processor schema owner)
2.3.2 Examples Database Schema

The Examples database represents the “source” database for the Flow Processor. This means that the Flow Processor examples will be extracting the data from this database and transforming it in a variety of ways.

Using your favorite RDBMS access software, execute the following sql scripts in the defined order:
1. jpetstore-create-owner.sql
You must run this script as the JPetstore schema owner
2. jpetstore-oracle-schema.sql (You must run this script as the Flow Processor schema owner)
3. jpetstore-oracle-dataload.sql (You must run this script as the Flow Processor schema owner)
2.3.3 Customizing the Configuration

You must tell the Flow Processor where and how to connect to both the Flow Processor configuration database and the source (or Examples) database within your environment.

2.3.3.1 Configuration for the Flow Processor Schema

The iBATIS open source software is used as our persistence layer. It allows us to specify the SQL used to retrieve data within XML-style configuration files. The file that determines the connection information is the fp-sql-map-config.xml file located in the c:\FlowProcessorPackage\properties directory. Below is the text from this file.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE sqlMapConfig PUBLIC "-//iBATIS.com//DTD SQL Map Config 2.0//EN" "http://www.ibatis.com/dtd/sql-map-config-2.dtd">

<sqlMapConfig>

 <properties url="file:///C:/FlowProcessorPackage/properties/fp-db-connection.properties" />

 <typeAlias alias="DynamicResultClassAlias" type="java.util.HashMap"/>

 <typeAlias alias="DynamicParameterClassAlias" type="java.util.Map"/>

 <transactionManager type="JDBC">

 <dataSource type="DBCP">

 <property name="JDBC.Driver" value="${driver}" />

 <property name="JDBC.ConnectionURL" value="${url}" />

 <property name="JDBC.Username" value="${uid}" />

 <property name="JDBC.Password" value="${pwd}" />

 <property name="Pool.MaximumActiveConnections" value="10" />

 <property name="Pool.MaximumIdleConnections" value="5" />

 <property name="Pool.MaximumWait" value="10000" />

 </dataSource>

 </transactionManager>

 <sqlMap url="file:///C:/FlowProcessorPackage/properties/fp-update.xml"/>

 <sqlMap url="file:///C:/FlowProcessorPackage/properties/fp-retrieve.xml"/>

 <sqlMap url="file:///C:/FlowProcessorPackage/properties/fp-exportmanager.xml"/>

</sqlMapConfig>

The first bolded text represents the ability to import values from an external properties file. The remaining bolded items are “parameters” that are applied for the JDBC Connection information. The value for the parameters is found within the properties file. For more detailed information on iBATIS SQL Mapper configuration files and usage, please consult the developer documentation which is available here (pdf).

You must modify the fp-db-connection.properties file

The actual modification that you will make is within the fp-db-connection.properties file which is also located in the c:\FlowProcessorPackage\properties directory. The text of this file included within the package is shown below.

####################################

Database Connectivity Properties

####################################

driver=oracle.jdbc.driver.OracleDriver

url=jdbc:oracle:thin:@//localhost:1521/orcl

uid=flow_processor

pwd=fp

You will most likely need to change the bolded text above which represents JDBC url for connecting to the database you elected to load the example schemas. If you chose to change the name of the Flow Processor schema and password, then you would need to alter the uid and pwd parameter as well to match the schema information you used in section 2.3.1 above.
2.3.3.2 Configuration for the Examples schema

The iBATIS configuration file that determines the connection information for the Examples schema is the jpetstore-sql-map-config.xml file located in the c:\FlowProcessorPackage\properties directory. Below is the text from this file.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE sqlMapConfig PUBLIC "-//iBATIS.com//DTD SQL Map Config 2.0//EN" "http://www.ibatis.com/dtd/sql-map-config-2.dtd">

<sqlMapConfig>

 <properties url="file:///C:/FlowProcessorPackage/properties/jpetstore-db-connection.properties"/>

 <typeAlias alias="DynamicResultClassAlias" type="java.util.HashMap"/>

 <typeAlias alias="DynamicParameterClassAlias" type="java.util.Map"/>

 <transactionManager type="JDBC">

 <dataSource type="DBCP">

 <property name="JDBC.Driver" value="${driver}"/>
 <property name="JDBC.ConnectionURL" value="${url}"/>

 <property name="JDBC.Username" value="${uid}"/>

 <property name="JDBC.Password" value="${pwd}"/>

<property name="Pool.MaximumActiveConnections" value="10"/>

<property name="Pool.MaximumIdleConnections" value="5"/>

<property name="Pool.MaximumWait" value="10000"/>

 </dataSource>

 </transactionManager>

 <sqlMap url="file:///C:/FlowProcessorPackage/properties/jpetstore-retrieve.xml"/>

</sqlMapConfig>
The first bolded text represents the ability to import values from an external properties file. The remaining bolded items are “parameters” that are applied for the JDBC Connection information.

You must modify the jpetstore-db-connection.properties file

The actual modification that you will make is within the jpetstore-db-connection.properties file which is also located in the c:\FlowProcessorPackage\properties directory. The text of this file included within the package is shown below.

####################################

Portal Database Connectivity Properties

####################################

driver=oracle.jdbc.driver.OracleDriver

url=jdbc:oracle:thin:@//localhost:1521/orcl

uid=jpetstore

pwd=jpetstore
You will most likely need to change the bolded text above which represents JDBC url for connecting to the database you elected to load the example schemas. If you chose to change the name of the Examples schema and password, then you would need to alter the uid and pwd parameter as well to match the schema information you used in section 2.3.2 above.

2.4 Flow Processor Examples

The several examples contained in the Flow Processor package are designed to demonstrate the flexibility of the Flow Processor. They are also intended to illustrate how the behavior of the Flow Processor can be altered by merely modifying configuration data rather than adding code.

2.4.1 Example 1: Raw XML Data Extraction

While the power of the Flow Processor is its transformation capability, at its center is a SQL extraction engine. After the SQL extraction phase, the raw data already resides in an XML format. Example 1 demonstrates what configuration data is required, or more importantly not required, to output the data in the Flow Processor’s raw XML format.

2.4.1.1 Configuration Breakdown

The following sections describe key tables that define the configuration data for the Flow in Example 1.

2.4.1.1.1 FLOW_SUBMITTAL Table

The name of the “Flow” (i.e., SUBMITTAL_CODE) for Example 1 is query.jpetstore.example1. Below is an illustration of all the data at the root level for the query.jpetstore.example1.

[image: image2.png]SUBMITTAL_DODE [auew pestre srampiT]

SUBMITTALDESC [Feieve e vabes o e AECOUNT el areave daam emperay Flow Processr L sucre

SUBMITTAL_MODEL_CODE [petsoe ovampe?
USE LAST_RUN_DATE_FLAG [T
T —
cocre LG [T
USER_LAST_UPDT [sbomers

TMSP_LAST_UPDT [5/10/2007

There are a couple of things to note about this record.

· The SUBMITTAL_MODEL_CODE is set to “jpetstore-example1” for this example. We will investigate this in the next section.

· The USE_LAST_RUN_DATE_FLAG is set to “N” for this example. This means that the value of the LAST_RUN_DATE column will not be passed into any query associated with this flow.

· The CACHE_FLAG is set to “N”. Caching the Flow Processor engine is not required during these examples because it is not being executed from a continuously running JVM.

2.4.1.1.2 FLOW_SUBMITTAL_MODEL Table

The SQL that defines the data being extracted by the Flow Processor is defined by the Flow Model. The Flow Model configuration data is located in the FLOW_SUBMITTAL_MODEL table. In Example 1, the Flow Model code (i.e., SUBMITTAL_MODEL_CODE) is jpetstore-example1. Below is an illustration of all the data for the jpetstore-example1 Flow Model.
[image: image3.png]SUBMITTAL_MODEL_CODE
SUBMITTAL MODEL _DESE [Feove 1 sccomt s o e ACCOUNT s
X DATA AW I R
B
oxpowsmEn
oxpoworreon [
B
T
oUTRUT BeSE e et
ouTAUT_ADOT_PEN_Tas [
B e
B e T —
WTERNEDITE_FOOT_Ta5 frem
USER LAST P [
B —
process_teve pows [
B
Y

MLvALUOATE FLAG [

There are a few noteworthy aspects about the above record.

No Transformation or Template Merge Data Phase

Because Example 1 is just concerned with outputting the raw XML data after the SQL Extraction phase, the Flow Processor is not performing the Transformation phase or the Template Merge phase. Consequently, the following columns are purposefully left empty:

· Transformation Phase –

· Leaving the CDX_DATA_SET_XSLT_FILENAME empty will cause the Flow Processor to skip the transformation phase.

· Template Merge Phase –

· Leaving the CDX_DOC_TEMPLATE_FILENAME blank prevents the Flow Processor from merging the XML output (transformed or raw) from being merged into a document template.

· By not performing the Template Merge phase, the following columns are left empty simply because they will not be used: CDX_DATA_SERVICE, CDX_FLOW_SCHEMA, and CDX_FLOW_OPERATION.

Defining the SQL used for extraction

The SEARCH_SQL_ID column defines the primary SQL id used for this Flow Model in Example 1. The primary SQL id represents a unique name as it is defined in the iBATIS configuration files for this project. The value for this record is “Retrieve.All.Accounts” and can be found in the c:\FlowProcessorPackage\ properties\jpetstore-retrieve.xml file. The text for this value is below.

<select id="Retrieve.All.Accounts" resultClass="DynamicResultClassAlias">

 <![CDATA[

 SELECT USERID "KEY" FROM ACCOUNT

]]>

</select>

So, upon executing Example 1, the first thing the Flow Processor will do is execute the above query producing the USERID column, aliased as the column “KEY”, for every row in the ACCOUNT table. This data will be used by each detailed query which we discuss in the next section.
Defining the format of the raw XML

The following columns define the format of the raw XML output:

· INTERMEDIATE_ROOT_TAG – This is the XML element that will wrap all data rows returned from the primary query record and all subsequent detailed query data for that record.

· OUTPUT_ROOT_OPEN_TAG – This defines exactly how the resulting root XML element will look like for the raw data. This is a separate column from the closed tag below because in future examples, we might include additional attributes in the root open tag like a valid XML schema with which to validate.

· OUPTUT_ROOT_CLOSED_TAG - This defines exactly how the resulting root closed XML element name will look like for the raw data.

· OUTPUT_BASE_FILENAME – The name of the output file. In our case, the output file name is “example1-output”.

· CDX_DOC_TYPE_CODE – The value of this column represents the file suffix that is applied to the resulting file. So, for this example, the resulting file suffix is “.xml” because we are output raw XML.
Unused Performance Parameters

There are several performance-related column values optionally left blank because Example 1 doesn’t present any performance implications.

· PROCESS_TEMP_ROWS – Defines the number of primary query rows (returned from the Search SQL Id) that are processed before being written to a temporary file on disk. Since this value is left blank, all data returned from the primary query is handled within memory.

· TEMP_DIRECTORY – This value defines a temporary directory where the temporary files can be written. This directory is only used when the PROCESS_TEMP_ROWS value is non-null.

2.4.1.1.3 FLOW_SUBMITTAL_MODEL_SQL Table

The detailed queries that are associated with the Flow Model are defined in the FLOW_SUBMITTAL_MODEL_SQL table. While you can define any number of detailed queries for a Flow, in Example 1, there is only one detailed query defined. Below is an illustration of the one detailed query defined for the jpetstore-example1 Flow Model.

[image: image4.png]SUBMITTAL_MODEL_CODE
N T ——
FETRIEVE 501 DESE [Ftiov oot o e ACCOUNT o
NTERMEDIATE LOCAL POIT TG [oosomtiesod
) —
AcTE_Fuag [T
USER_LAST,LpT [
B —

There are two columns of interest in this record.

· INTERMEDIATE_LOCAL_ROOT_TAG – This is the name of the opening and closing element that wraps each record of data returned from the detailed query.

· RETRIEVE_SQL_ID – This column defines the detailed SQL id used for this Flow Model in Example 1. The Retrieval SQL id represents a unique name as it is defined in the iBATIS configuration files for this project. The value for this record is “Retrieve.Account.Data” and can be found in the c:\FlowProcessorPackage\ properties\jpetstore-retrieve.xml file. The text for this value is below.

 <select id="Retrieve.Account.Data"

 resultClass="DynamicResultClassAlias"

 parameterClass="DynamicParameterClassAlias">

 <![CDATA[

 SELECT USERID, EMAIL, FIRSTNAME, LASTNAME, STATUS, ADDR1,

 ADDR2, CITY, STATE, ZIP, COUNTRY, PHONE

 FROM ACCOUNT

 WHERE USERID = #KEY#

]]>

 </select>

Recall that the Primary Search SQL retrieved a column whose column alias was “KEY”. In this detailed query, as in any other detailed query that could be added to a Flow Model, any column from the Primary Search query record can be referenced within the detailed query. So, this query is simply returning the Account data associated with a specific user id.

2.4.1.2 Running Example 1

In order to execute Example 1, create a DOS prompt and change directory to the c:\FlowProcessorPackage directory. The following command line statement will execute the Flow Processor:

C:\FlowProcessorPackage>run .\ini\fp-cmd-line-example1.ini

The only parameter required is the command-line initialization file. This file describes where the output will go, the submittal flow code to execute, and which databases to connect to. Below is the text from the fp-cmd-line-example1.ini file.

operation=query

output-file=./output/example1-output.xml

flow-processor-config-file=C:/FlowProcessorPackage/ini/fp-config-examples.ini

submittal-code=query.jpetstore.example1

· The operation=query line instructs the command line utility that the resulting output can be stored to a file.

· The output-file parameter indicates where the output from the Flow Processor should be stored.

· The flow-processor-config-file parameter indicates which Flow Processor configuration file to use when invoking the flow. Remember, this configuration file instructs the Flow Processor where to find the Flow Processor configuration data repository and the Examples (or Source) data repository.

· The submittal-code parameter specifies which Flow code we are executing. This relates directly to the FP_SUBMITTAL.SUBMITTAL_CODE column.

Below is an illustration of the output that you should see when running Example 1.

[image: image5.png]:\FlowProcessorPackage>echo off

\ini\fp-cmd-line-examplel.ini

.Execution Id = 61, Time:
06/04/2007 21:51:48.675

06/04/2007 21:51:46.892

06/04/2007 21:51:48.675
06/04/2007 21:5:

:48.675. . .Flapsed Time:
06/04/2007 21:51:48.675

Processed
Submittal

Done

INFO - FlowProcessor (v1.5) Starting,..Date:

INFO - Pre-processes starting...Time:

INFO - Pre-processes complete...Time:

INFO - Detailed process starting..

INFO - Detailed process starting...Time:

INFO - Executing primary search query...

INFO - FlowProcessor to process <2> total primary records.
INFO - Processing primary record <1> of <2>.

INFO - Processing primary record <2> of <2>.

INFO - Processed Batch <1> of <2> rows.

INFO - Processed <2> primary records.

INFO - Detailed process complete..

INFO - Export processes starting...Time: 86/04/2007 2
%mgg - Export processes complete...Time: 06/04/2007 21:
Submittal 'query.jpetstore.examplel’ starting...

Starting PreProcessing for 'query.jpetstore.examplel’.

<2> primary records.

"query. jpetstore.examplel’ finished.

INFO - FlowProcessor complete...Date: 06/04/2007 21:51:49.566. .

:\FlowProcessorPackage>

Time: 06/04/2007 21:51:49.556. .
1:49.566. .

-Elapsed Time:

Total Rows processed <2>.
-Elapsed Time:

-Elapsed Time:

Oms

267hms

00:00. 881ms
10ms

2.4.1.3 Reviewing the Output

After execution of the Flow Processor, the output file from Example 1 is c:\FlowProcessorPackage\output\example1-output.xml as specified in the command line initialization file. Below is the content of this file.

[image: image6.png]- <accounts>
~ <aceount>
- <account-record>
<state>ChA</state>
<userid>ACID</userid>
<status>0K</status >
<country >USA</country>
<city>Palo Alto=/city>
<2ip=94303 /2ip>
<addri>901 San Antonio Road-</addri>
<lastname >X¥X</lastname>
<firstname > ABC</firstname>
<addr2>MS UCUP02-206</addr2>
<phone>555-555-5555</phane >
<email>acid@yourdomain.coms/email >
</acoount-record>
</acoount>
- <aceaunt>
- <account-record>
<state>CA</state>
<userid>jzee=/userid>
<status>0K</status >
<country >USA</country>
<city>Palo Alto=/city>
<2ip=94303 /2ip>
<addri>901 San Antonio Road-</addri>
<lastname >X¥X</lastname>
<firstname > ABC</firstname>
<addr2>MS UCUP02-206</addr2>
<phone>555-555-5555</phane >
<email>yourname@yourdomain.com=< /email>
</acoount-record>
</scoount>
< /accounts>

The root element of this payload is <accounts> and that was specified by the OUTPUT_ROOT_OPEN_TAG column of our Flow’s model definition.

There are two <account> elements within this payload.

· The reason for the two records is because that is how many records were returned by the primary query located here.

· The primary query, Retrieve.All.Accounts, was assigned in the SEARCH_SQL_ID column of our Flow’s model definition.

· Each primary query record is wrapped within an <account> element name because it was specified by the INTERMEDIATE_ROOT_TAG column of our Flow’s model definition.

Each account record’s detail XML elements is the result of executing the single detailed query associated with our Flow’s model.

· The assignment of this detailed query was done in the RETRIEVE_SQL_ID column from the Flow’s Model detail queries table.

· Each detail query record is wrapped in the <account-record> element because this was specified by the INTERMEDIATE_LOCAL_ROOT_TAG column from the Flow’s Model detail queries table.

· The detailed query being executed is Retrieve.Account.Data and the XML elements correspond directly to the columns being retrieved from this query.

2.4.2 Example 2: Exchange Network Submission

This example performs the task for which the Flow Processor was intended: the submission of XML to the Exchange Network. In Example 2, we must take the raw XML payload, transform it, merge it into an Exchange Network Flow Document, and invoke web service calls to submit the payload to the Exchange Network. This example uses a CDX Flow Code of “FRS” in order to submit the payload; however, the payload is not in FRS format. It is merely labeled as “FRS” in order to complete the submittal to the Test CDX node at EPA.

2.4.2.1 Configuration Breakdown

The following sections describe key tables that define the configuration data for the Flow in Example 2.

2.4.2.1.1 FLOW_SUBMITTAL Table

The name of the “Flow” (i.e., SUBMITTAL_CODE) for Example 2 is submit.jpetstore.example2. Below is an illustration of all the data at the root level for the submit.jpetstore.example2.

[image: image7.png]suBMITTAL oD TS

SUBMITTALDESC [Sunis e compete ety data o [TENS PRBDUT /CATERDRY I Exchange Nevork

SUBMITTAL_MODEL_CODE [petsoe ovampe?
USE LAST_RUN_DATE_FLAG [T
T —
cocre LG [T
USER_LAST_UPDT [sbomers

TMSP_LAST_UPDT [5/10/2007

There are a couple of things to note about this record.

· The SUBMITTAL_MODEL_CODE is set to “jpetstore-example2” for this example. We will investigate this in the next section.

· The USE_LAST_RUN_DATE_FLAG is set to “N” for this example. This means that the value of the LAST_RUN_DATE column will not be passed into any query associated with this flow.

· The CACHE_FLAG is set to “N”. Caching the Flow Processor engine is not required during these examples because it is not being executed from a continuously running JVM.

2.4.2.1.2 FLOW_SUBMITTAL_MODEL Table

In Example 2, the Flow Model code (i.e., SUBMITTAL_MODEL_CODE) is jpetstore-example2. Below is an illustration of all the data for the jpetstore-example2 Flow Model.
[image: image8.png]SUBMITTAL_MODEL_CODE

SUBMITTAL MBDEL DESC et coreteommvrtoy
Cox oATA RO CoDE RE
cox poc e copE
N e
L
COX_DOC_TENPLATE ALENANE [o FonProcessoPotogspropeieerdienpe o
COX_DATALSET YSLT_FLENAHE [o PonPrcessoPctoastpropeiseransdhd
OUTPUT BASE_FLENAVE [rezodon
T o —
OUTRUT_AOOT_L0SE 148 [Toomsmarioy
seepch_soL D [GAimeney
e
USER_LAST P [
N o —
L
P
Cox AT SERVICE sl

MLvBUOATE FLAG [

There are a few noteworthy aspects about the above record.

Specifying Transformation and Template Merge Phase

For Example 2, we are performing both the Transformation and Template Merge phase. Consequently, the following columns must be populated with the appropriate configuration file:

· Transformation Phase –

· The CDX_DATA_SET_XSLT_FILENAME specifies the XSLT file used to transform the raw XML data from the Flow Processor data extraction into a final output format. You must specify the fully qualified path to the XSLT configuration file.

· Template Merge Phase –

· The CDX_DOC_TEMPLATE_FILENAME represents a file that contains “template text” which is replaced by the Flow Processor during the merge process. You must specify the fully qualified path to the XSLT configuration file.

· By performing the Template Merge phase, values should be provided for the following columns because they are used during the merge process: CDX_DATA_SERVICE, CDX_FLOW_SCHEMA, and CDX_FLOW_OPERATION.

· The template tags which are replaced within the Template Merge file are specified within the FP_OPTION table entries. All relevant entry names start with “FP_DOC_TEMPLATE_TAG_”. You can review these entries here.

Defining the SQL used for extraction

The SEARCH_SQL_ID column defines the primary SQL id used for this Flow Model in Example 2. The primary SQL id represents a unique name as it is defined in the iBATIS configuration files for this project. The value for this record is “List.All.Inventory” and can be found in the c:\FlowProcessorPackage\ properties\jpetstore-retrieve.xml file. The text for this value is below.

<select id="List.All.Inventory" resultClass="DynamicResultClassAlias">

 <![CDATA[

 SELECT ITEMID "KEY" FROM INVENTORY

]]>

</select>
So, upon executing Example 2, the first thing the Flow Processor will do is execute the above query producing the ITEMID column, aliased as the column “KEY”, for every row in the INVENTORY table. This data will be used by each detailed query which we discuss in the next section.
Defining the format of the raw XML

The following columns define the format of the raw XML output:

· INTERMEDIATE_ROOT_TAG – This is the XML element that will wrap all data rows returned from the primary query record and all subsequent detailed query data for that record.

· OUTPUT_ROOT_OPEN_TAG – This defines exactly how the resulting root XML element will look like for the raw data. This is a separate column from the closed tag below because in future examples, we might include additional attributes in the root open tag like a valid XML schema with which to validate.

· OUPTUT_ROOT_CLOSED_TAG - This defines exactly how the resulting root closed XML element name will look like for the raw data.

· OUTPUT_BASE_FILENAME – The name of the output file. In our case, the output file name is “example2-output”.

· CDX_DOC_TYPE_CODE – The value of this column represents the file suffix that is applied to the resulting file. So, for this example, the resulting file suffix is “.zip” because we are output a ZIP file.
2.4.2.1.3 FLOW_SUBMITTAL_MODEL_SQL Table

The detailed queries that are associated with the Flow Model are defined in the FLOW_SUBMITTAL_MODEL_SQL table. In Example 2, there are three detailed queries defined. Below is an illustration of these detailed queries defined for the jpetstore-example2 Flow Model.

[image: image9.png]SUBMITTAL . |RETRIEVE_SQL_ID | RETRIEVE_SQL_DESC [INTE... [0.|A.[USE... |

RetizvellemFiecord Retieves a ecord from the [TEM table fem 1Y showers
ipettoe-erample2. Relieve Product Recard Relisves atecord o the PRODUCT table procket 2 sbawrs
|ipetstore-example2 Retiisve. Category.Record Reetieves a record fiom the CATEGORY table category 3 showers

There are two columns of interest in this record.

· INTERMEDIATE_LOCAL_ROOT_TAG – This is the name of the opening and closing element that wraps each record of data returned from the detailed query.

· RETRIEVE_SQL_ID – This column defines the detailed SQL id used for this Flow Model in Example 2. The Retrieval SQL id represents a unique name as it is defined in the iBATIS configuration files for this project. The values for these records can be found in the c:\FlowProcessorPackage\ properties\jpetstore-retrieve.xml file.

2.4.2.1.4 Flow Submittal Export Tables

The Export manager classes for the Flow Processor are defined in the FLOW_SUBMITTAL_EXPORT table. In Example 2, we are using the Exchange Network Node Submittal export manager.

[image: image10.png]SUBMITTAL_EXPORT_CODE [EX

SUBMITTAL EXPORT_DESE [subt e ML paoado s Evchone Newolk e

EXPORT_ENAGER CLASS_NAME [s e e CD Eoprtneaer
e
B 7 —

The primary column of interest is the EXPORT_MANAGER_CLASS_NAME if you provide your own export manager classes you will need to register the exact class name in this column. The com.cgiams.esl.fp.em.CDXExportManager class is part of the Flow Processor deployment and is always available.

Each Export Manager can have parameters associated with it and these parameters are defined in the FLOW_SUBMITTAL_EXPORT_PARAM table. For the Exchange Network Node Submittal export manager from Example 2, it takes five parameters.

[image: image11.png]SUBMITTAL_EXPORT_CODE | PARAM_NAME |VALUE_STRING |PARAM_DESC |
DATAFLOW CODE COLUNN NAME CDX_DATA_FLOW_CODE The name of the column 1
Echange Network Node Submital | DOC TYPE CODE COLUMN NAME CDX_DAC_TYPE_CODE The name of the column 1
| Exchange Network Node Submittal | PWD. test The password for the user
| Exchange Network Node Submitial UID cdk The user name used ta log
| Erchange Network Node SubnitalURL st cpacchinode net/cd/sevices NetworkliodeParType V10 The URL of COX to submi

· DATA FLOW CODE COLUMN NAME – This parameter defines the column from the Flow’s model definition that represents the Exchange Network Flow Code name. This value is used during the submit network node call. The value for this parameter comes from the CDX_DATA_ FLOW_CODE of the Flow’s model definition.

· DOC TYPE CODE COLUMN NAME – This parameter defines the document type that will be attached to the submit network node call. Currently, either “XML” or “ZIP” is allowed. The value for this parameter comes from the CDX_DOC_TYPE_CODE of the Flow’s model definition.

· UID – A valid user id associated with the Exchange Network Node site.

· PWD – The password associated with the UID parameter for the Exchange Network Node site.

· URL – The Exchange Network Node web service endpoint capable of accepting the submit network node web service call.

All five parameters are required to make a successful Exchange Network submit method invocation.

The assignment of a specific Export Manager to a Flow is done using the FLOW_SUBMITTAL_EXPORT_XREF table. In Example 2, there is only one assigned Export Manager and it is illustrated below.

[image: image12.png]SUBMITTAL_CODE [EETNT

SUBMITTAL EXPORT_C0DE [Exchonge etk o bt
) —
AcTE_Fuag [T
USER_LAST, LT [
B —

You must set the ACTIVE_FLAG=Y in order for the Export Manager to become effective for the Flow.

2.4.2.2 Running Example 2

In order to execute Example 2, create a DOS prompt and change directory to the c:\FlowProcessorPackage directory. The following command line statement will execute the Flow Processor:

C:\FlowProcessorPackage>run .\ini\fp-cmd-line-example2.ini

The only parameter required is the command-line initialization file. This file describes where the output will go, the submittal flow code to execute, and which databases to connect to. Below is the text from the fp-cmd-line-example2.ini file.

operation=query

output-file=./output/example2-output.zip
flow-processor-config-file=C:/FlowProcessorPackage/ini/fp-config-examples.ini

submittal-code=submit.jpetstore.example2
· The operation=query line instructs the command line utility that the resulting output can be stored to a file.

· The output-file parameter indicates where the output from the Flow Processor should be stored.

· The flow-processor-config-file parameter indicates which Flow Processor configuration file to use when invoking the flow. Remember, this configuration file instructs the Flow Processor where to find the Flow Processor configuration data repository and the Examples (or Source) data repository.

· The submittal-code parameter specifies which Flow code we are executing. This relates directly to the FP_SUBMITTAL.SUBMITTAL_CODE column.

Below is an illustration of the output that you should see when running Example 2.

[image: image13.png][Ce\F lowProcessorPackagedrun ./ini/fp-omd-line-enample2. ini
1 FLowprocessorpaskagesesho off

</ ini/Fpond-Line-exanple2. tni

Flogroosssar (01,5) Seart
PraopRsietsed!sthe Rl
PrEBrosEIs: SLe
peratisa et e
et iper gand GRS

[
Ereeitihs B g REsot €
EESCIIEING BRIRAN RS20
ERSCEIEING BRIRSN REEONd ¢
EESCEIEING BRIRSL REEONd O
EESCEIEING BRIRSN RSSO
EESCEIEING BRIRSN RSSO <
EESCEIEING BRIRSN RSSO O
EESCEIEING BRIRSL REEONd
EESCEIEING BRIRSN RSSO
EESCEIEING BRIRSN REEONd O
EESCEIEING BRIRSN REEONd ¢
EESCEIEING BRIRSN REEONd ¢
EESCEIEING BRIRSN REEONd ¢
EESCEIEING BRIRSN REEONd ¢
$
$
$
$
$
§
§
bé
bé
bé
bé
bé
bé

ss: 0 21 o0n 19,06,5.046

20212507

) orinary records.

BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
BESCEIENNS BRiRSN ESong
ERSEEETING Brina reeerd
ErecEIEing B Reserg B S
BEBCEEalPaB R TSRS R0u2T Foal Rous processed 2m.
Pr3cEiied U355 o inal)
S peallEE A B Elpsed Tine: 60:01. 17ons
o EEEN RETE =
o HgnSses Resali
EIZRERSC TR tOSi ode subnices!
<lntet Lode, Shenl iR

BiRaliesiante! Reo
FelRSEEIan 1A, B3B8t acar-74a9-47d4-s053-BodM 07229 1
Tine: 06/21/2007 14146:39.925.

Elspsed Tine: 1138ms.

INED = Euport processes complere.
i

Sibnizeat rsunic. joststore, enanple2 starving.
150 S e PR e R e SN e i

Processed <28y prinary records.
ErBers finsie Realifty

BN ae TEtosi ode subnices!

SRS Rl HERL TR

FelRSEEIan 1A, B3B8t acar-74a9-47d4-s053-BodM 07229 1

ouon vral rgubnit, gperstore, exanglee: £inicheg
1S 2 Blochrstet b Lot UBARE: B0y 1

5.345. . Elapsed Tine: 13539ms

. r Louprocessorpack azes,

2.4.2.3 Reviewing the Output

After execution of the Flow Processor, the output file from Example 2 is c:\FlowProcessorPackage\output\example2-output.zip as specified in the command line initialization file. Below is an excerpt from the XML payload within the zip from this file.

[image: image14.png]<?xml version="1.0" 7>
- <Docurment ximins: xsd="http://vivivi.w3.0rg/2001/XMLSchema" 1d="1182518608428"
sins="http:/ /vivivs.exchangenetwork.net/schema/v1.0/ExchangeNetworkDocument..xsd"
srilns: ds="http:/ /vvew.w3.0rg/2000/09/xmidsig#" «rmins: xsi="http:/ /vwwe.w3.0rg/2001/XMLSchema-i
ssitschemalocation="http:/ /vvew.exchangenetwork net/schema/v1.0/ExchangeNetworkDocument.xsd
http:/ /test epacdxnode.net/ExchangeNetworkDocument .xsd">
- <Header xmins=">
<Author>Scott Bowers</authors
<Organization>GGl</Organization>
<Title>My Dummy Submittal</Title>
<CreationTime>2007-06-22T09:23:24.303</CreationTime>
<DataService>submitMyService</Dataservice>
<Contactinfo>Scott Bowers - GGl</Contactinfo>
- <Property>
<name>Schemas/narmes
<value>NotRealSchema.xsd</value>
</Property>
</Meader>
- <Payload Operation="SUBMIT" mins
- <Completelnventory>
- <Myltern>
<Categary>Fish</Category>
<Productiame>Angelfish</Productiarmes
<ltemld>EST-1</Itemld>
<Price>16.5</Prices
</Myltern>
- <Myltern>
<Category>Dogs</Category>
<ProductName>Dalmation</Productiames
<ItemId>EST-10</ItemId>
<Price>18.5</Price>
</Myltern>

stance

2.4.2.3.1 Template Merge Processing

The majority of the information at the beginning of this XML document comes directly from the Template File specified by the CDX_DOC_TEMPLATE_ FILENAME column of our Flow’s model definition. The content of the c:\FlowProcessorPackage\properties\ex2-template.txt template file is listed below.

<?xml version="1.0"?>

<Document

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 Id="<%Insert Id Here%>"

 xmlns="http://www.exchangenetwork.net/schema/v1.0/ExchangeNetworkDocument.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.exchangenetwork.net/schema/v1.0/ExchangeNetworkDocument.xsd

 http://test.epacdxnode.net/ExchangeNetworkDocument.xsd">

 <Header xmlns="">

 <Author>Scott Bowers</Author>

 <Organization>CGI</Organization>

 <Title>My Dummy Submittal</Title>

 <CreationTime><%Insert Timestamp Here%></CreationTime>

 <DataService><%Insert Data Service Here%></DataService>

 <ContactInfo>Scott Bowers - CGI</ContactInfo>

 <Property>

 <name>Schema</name>

 <value><%Insert Schema Here%></value>

 </Property>

 </Header>

 <Payload Operation="<%Insert Payload Operation Here%>" xmlns="">

 <%Insert Data Set Here%>
 </Payload>

</Document>

Below is an explanation of how the data is replaced in the template for the highlighted areas above.

· <%Insert Id Here%> is the text associated with the FP_DOC_TEMPLATE_ TAG_ID option in the FP_OPTION table. It is always replaced with the current milliseconds of the Flow Processor execution so it is guaranteed to be unique for every execution.

· <% Insert Timestamp Here %> - is the text associated with the FP_DOC_ TEMPLATE_TAG_TIMESTAMP option in the FP_OPTION table. It is replaced with the current date and time of the processor execution. The format of this date and time is governed by the FP_DOC_TEMPLATE_ TAG_TIMESTAMP_FORMAT option.
· <% Insert Data Service Here %> - is the text associated with the FP_DOC_ TEMPLATE_TAG_DATA_SERVICE option in the FP_OPTION table. It is replaced with the value of the CDX_DATA_SERVICE column of the Flow’s model definition.
· <% Insert Schema Here %> - is the text associated with the FP_DOC_ TEMPLATE_TAG_SCHEMA option in the FP_OPTION table. It is replaced with the value of the CDX_FLOW_SCHEMA column of the Flow’s model definition.
· <% Insert Payload Operation Here %> - is the text associated with the FP_DOC_ TEMPLATE_TAG_PAYLOAD_OPERATION option in the FP_OPTION table. It is replaced with the value of the CDX_FLOW_OPERATION column of the Flow’s model definition.
· <% Insert Data Set Here %> - is the text associated with the FP_DOC_ TEMPLATE_TAG_DATA_SET option in the FP_OPTION table. It is replaced with the entire output from the Flow Processor’s data extraction and optional transformation phases.

2.4.2.3.2 Transformation Processing

The root element of this dataset is <CompleteInventory> and that was specified by the OUTPUT_ROOT_OPEN_TAG column of our Flow’s model definition.

There are many <MyItem> elements within this payload. The reason for this is governed by the c:\FlowProcessorPackage\properties\example2b.xsl XML stylesheet which was assigned to this Flow model by the CDX_DATA_SET_XSLT_ FILENAME column. The text for the example2b.xsl file is listed below.
<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" version="1.0" omit-xml-declaration="yes" indent="yes"/>

<!-- The root nodes. -->

<xsl:template match="inv-item">

 <MyItem>

 <Category><xsl:value-of select="./category/category_name"/></Category>

 <ProductName><xsl:value-of select="./product/product_name"/></ProductName>

 <ItemId><xsl:value-of select="./item/itemid"/></ItemId>

 <Price><xsl:value-of select="./item/listprice"/></Price>

 </MyItem>

</xsl:template>

</xsl:stylesheet>

The above stylesheet is written knowing the behavior of the Flow Processor, in particular, the format of the raw XML after the data extraction phase. You can review how this format is derived in section 2.4.1.3 above.

2.4.2.3.3 Submission Process

The final XML payload that is passed to each Export Manager assigned to the Flow is the result of the Transformation and Template Merge phase. For Example 2, this means the entire <Document> XML.

Since there was only one Export Manager assigned to our Flow, namely the Exchange Network Node Submittal export manager, this is the only output you see from the Flow Processor execution.

[image: image15.png]INEQ = Erport
o = | EBot ReSil:
Eibors nansies feci Tt

BB aC TR toSh eds
Slniet Lo,

T ——.

Tine:

Symires
gt

Fesa
83 corr-orea-nrs-asaa-f7ommbeassar
Tine: 06/22/2007 69:23:45.670.

Elapsed Times

ss6tns

This processor is designed to return the Submit Status, the result of performing a Node Ping method, and the actual Transaction id with which you can manually check the status.

The only reason this was “successful” was because Example 2 used a real Exchange Network Flow Code of “FRS”. Clearly the payload does not conform to FRS standards and there is no doubt parsing errors on the CDX Test Node site that suggests the same. Had an unrecognized Flow Code or invalid Document Type code been used, the Export Manager would have produced errors and those errors would be output to the console.

2.4.3 Example 3: Building an HTML Report

Our final example demonstrates the ability to create an output format which is not XML. In Example 3, we will apply a transformation that produces an HTML output file and use the File Export Manager class.

2.4.3.1 Configuration Breakdown

The following sections describe key tables that define the configuration data for the Flow in Example 3.

2.4.3.1.1 FLOW_SUBMITTAL Table

The name of the “Flow” (i.e., SUBMITTAL_CODE) for Example 3 is report.jpetstore.example3. Below is an illustration of all the data at the root level for the report.jpetstore.example3.

[image: image16.png]SUBMITTAL_CODE [

SUBMITTAL_DESC [Creates an HTML report for ourenfie e Inventory
SUBMITTAL_MODEL_CODE [ietstore evample3

USE LAST_AUN_ATE FLas [

LAST_RUN_DATE

Sk [T

USER_LAST_UPDT [sbowers —
TMSP_LAST_UPDT [5/10/2007

There are a couple of things to note about this record.

· The SUBMITTAL_MODEL_CODE is set to “jpetstore-example3” for this example. We will investigate this in the next section.

· The USE_LAST_RUN_DATE_FLAG is set to “N” for this example. This means that the value of the LAST_RUN_DATE column will not be passed into any query associated with this flow.

· The CACHE_FLAG is set to “N”. Caching the Flow Processor engine is not required during these examples because it is not being executed from a continuously running JVM.

2.4.3.1.2 FLOW_SUBMITTAL_MODEL Table

In Example 3, the Flow Model code (i.e., SUBMITTAL_MODEL_CODE) is jpetstore-example3. Below is an illustration of all the data for the jpetstore-example3 Flow Model.
[image: image17.png]SUBMITTAL_MODEL_CODE

SUBMITTAL MODEL DESE [Fetevs 8o o el sy
Cox oA AT oD R
e
N
T e
COX_DOC_TENPLATE FLENANE [o PonProcessoP o ogspropeiserdiensie o
COX_DATALSET YSLT_FLENAHE [o PonPrcessoPctopropeieranglind
OUTPUT BASE_FLENAVE [rritoion
B
B
seap_saL0 frepatiios
WTERMEDITE_FOOT_TaG [l
T e
B e —
process_tevp pows [
weomeror [
B

MLVALIOATE FLAG [

There are a few noteworthy aspects about the above record.

Specifying Transformation and Template Merge Phase

For Example 3, we are performing both the Transformation and Template Merge phase. Consequently, the following columns must be populated with the appropriate configuration file:

· Transformation Phase –

· The CDX_DATA_SET_XSLT_FILENAME specifies the XSLT file used to transform the raw XML data from the Flow Processor data extraction into a final output format. You must specify the fully qualified path to the XSLT configuration file.

· Template Merge Phase –

· The CDX_DOC_TEMPLATE_FILENAME represents a file that contains “template text” which is replaced by the Flow Processor during the merge process. You must specify the fully qualified path to the XSLT configuration file.

· The template tags which are replaced within the Template Merge file are specified within the FP_OPTION table entries. All relevant entry names start with “FP_DOC_TEMPLATE_TAG_”. You can review these entries here.

Defining the SQL used for extraction

The SEARCH_SQL_ID column defines the primary SQL id used for this Flow Model in Example 3. The primary SQL id represents a unique name as it is defined in the iBATIS configuration files for this project. The value for this record is “Report.All-Items” and can be found in the c:\FlowProcessorPackage\ properties\jpetstore-retrieve.xml file. The text for this value is below.

 <select id="Report.All-Items" resultClass="DynamicResultClassAlias">

 <![CDATA[

 SELECT 'X' FROM DUAL

]]>

 </select>

In this example, all the data necessary for producing the report is built from the detailed queries. Remember, the detailed queries will fire provided that at least one primary SQL row is returned. The above SQL guarantees that one and only one row is produced. This means that all detailed queries will fire only once. This behavior is nice when the detailed queries can produce the desired number of rows with far fewer queries. Also, it is appropriate when the data required in the final output does not depend upon any columns from the primary query. This is the case for Example 3.
Defining the format of the raw XML

The following columns define the format of the raw XML output:

· INTERMEDIATE_ROOT_TAG – This is the XML element that will wrap all data rows returned from the primary query record and all subsequent detailed query data for that record.

· OUTPUT_ROOT_OPEN_TAG – This value is left blank intentionally to show that it is not necessary to specify this value since our final output is not XML. In this example, the Template text file is providing the appropriate HTML syntax.

· OUPTUT_ROOT_CLOSED_TAG - This value is left blank intentionally to show that it is not necessary to specify this value since our final output is not XML. In this example, the Template text file is providing the appropriate HTML syntax.

· OUTPUT_BASE_FILENAME – The name of the output file. In our case, the output file name is “example3-output”.

· CDX_DOC_TYPE_CODE – The value of this column represents the file suffix that is applied to the resulting file. So, for this example, the resulting file suffix is “.html” because we are producing an HTML file.
2.4.3.1.3 FLOW_SUBMITTAL_MODEL_SQL Table

The detailed queries that are associated with the Flow Model are defined in the FLOW_SUBMITTAL_MODEL_SQL table. In Example 3, there are three detailed queries defined. Below is an illustration of these detailed queries defined for the jpetstore-example3 Flow Model.

[image: image18.png][INTE... [0.|A.|USE.

RETRIEVE_SQL_... RETRIEVE_SQL_DESC
showers

Retieve al recards fiom the CATEGDRY table category | 1Y
podict 2 sbowers

item 3Y | showers

<7 SUBMITTAL

Relieve AllCategaries

| letloeranpies Retiove AL Podes
ipetstocranple3 Retiove Alllems

Retieve al records fiom the PRODUCT table
Retrieve al records from the ITEM table.

There are two columns of interest in this record.

· INTERMEDIATE_LOCAL_ROOT_TAG – This is the name of the opening and closing element that wraps each record of data returned from the detailed query.

· RETRIEVE_SQL_ID – This column defines the detailed SQL id used for this Flow Model in Example 3. In our example, all three SQL queries are independent of any primary query row and are designed to only fire one time. The Retrieval SQL id represents a unique name as it is defined in the iBATIS configuration files for this project. The values for these records can be found in the c:\FlowProcessorPackage\ properties\jpetstore-retrieve.xml file.

2.4.3.1.4 Flow Submittal Export Tables

The Export manager classes for the Flow Processor are defined in the FLOW_SUBMITTAL_EXPORT table. In Example 3, we are using the File Archiver export manager.

[image: image19.png]SUBMITTAL_EXPORT_CODE
SUBMITTAL_EXPORT_DESC [rcties s o aogson
EXFORT_MANAGER_CLASS_NAME [com i .o Fiertanagr
e
B o —

The primary column of interest is the EXPORT_MANAGER_CLASS_NAME if you provide your own export manager classes you will need to register the exact class name in this column. The com.cgiams.esl.fp.em.FileExportManager class is part of the Flow Processor deployment and is always available.

Each Export Manager can have parameters associated with it and these parameters are defined in the FLOW_SUBMITTAL_EXPORT_PARAM table. For the File Archiver export manager from Example 3, it takes only one parameter.

[image: image20.png]SUBMITTAL EXPORT_CODE
PARAM_NAME [DRECTORY
PARAM_DES [The dectory path for the output (o be placed.

VALUE_STRING [c*FlowProcessoPackagetoutputs
e
D —
scve rias 7
USER_LAST_UPDT [sbowers
TMSP_LAST_UPDT 6222007

· DIRECTORY – This parameter defines the file system path where the final output file will reside. The File Archiver will append the date and timestamp to the file name to ensure a unique file for each Flow Processor execution.

The assignment of a specific Export Manager to a Flow is done using the FLOW_SUBMITTAL_EXPORT_XREF table. In Example 3, there is only one assigned Export Manager and it is illustrated below.

[image: image21.png]SUBMITTAL_CODE

SUBMITTAL EXPORT_Co0E [Flehver
) —
AcTE_Fuag [T

USER_LAST UpDT [
B o

You must set the ACTIVE_FLAG=Y in order for the Export Manager to become effective for the Flow.

2.4.3.2 Running Example 3

In order to execute Example 3, create a DOS prompt and change directory to the c:\FlowProcessorPackage directory. The following command line statement will execute the Flow Processor:

C:\FlowProcessorPackage>run .\ini\fp-cmd-line-example3.ini

The only parameter required is the command-line initialization file. This file describes where the output will go, the submittal flow code to execute, and which databases to connect to. Below is the text from the fp-cmd-line-example3.ini file.

operation=submit
output-file=./output/example3-output.txt
flow-processor-config-file=C:/FlowProcessorPackage/ini/fp-config-examples.ini

submittal-code=report.jpetstore.example3
· The operation=submit line instructs the command line utility that the resulting output is just the log produced from the export manager classes. Any output produced must come from the export manager classes.

· The output-file parameter indicates where the log information from the Flow Processor should be stored.

· The flow-processor-config-file parameter indicates which Flow Processor configuration file to use when invoking the flow. Remember, this configuration file instructs the Flow Processor where to find the Flow Processor configuration data repository and the Examples (or Source) data repository.

· The submittal-code parameter specifies which Flow code we are executing. This relates directly to the FP_SUBMITTAL.SUBMITTAL_CODE column.

Below is an illustration of the output that you should see when running Example 3.

[image: image22.png]C: \F lowProcessorPackagedrun . ini/fp-ond-Line-exanpled. ini
1 FLowprocessorpaskagesesho off

3 . inisfp-ond-tine-enannted. ini

INED - Flogproceszor (v1.5) Sraving,

IHE - TlopEEReten L R

NS S RERrosRiI Lt

S PR R

Ihed fetdiied Broses: Hiaving

i S R e

INEG = ElouPRofestarteo"Bro0e e ¥ doval or inary records.

o e e A

Hidi BEBCEIERPRBEINED SR 1u2] “Hatat Rows prosessed <1,
i PRBCEREed ST B lnded reoaedh

NS pecCiteRainocts SonpictelsoTINE! 05222007 21147:13.901. . Elspeed Tine: 0BS0O.S1ins
IS BenncRSseIii SOMITISIITG ERVGR LIRSS
I - EiESr RESITE

Eibors nansies feciit

Bt

FlouProoessorPackage\outoutenanp Le3-output. hinl_2087-05-22_21-47-12.htnl
INED - Euport prooesses conplete...Tiner 06/22/2007 21147:13.911...Elapsed Tiner 1ins
IS -

Sibnizeat rrgpore. soststore, eranpled starving.
tR S P ERe s R e R TR R it 3

Processed <15 prinary records
R
BRI o

4 F LouProcessorPaskagenoutput enanp Le3-output o |_2807-06-22_21-47-12.henl

ouog val rpeport. spererore enanplez: ginishe
15" Lol PEBSEL R LEDTE U TIBAEE, B0A0B8r 21ua7: 19,511, ELapsed Tires 12720

c:\F LowProcessorPackage>

2.4.3.3 Reviewing the Output

After execution of the Flow Processor, the output file from Example 3 is c:\FlowProcessorPackage\output\example3-output.txt as specified in the command line initialization file. Below is the content of this file.

Submittal 'report.jpetstore.example3' starting...

Starting PreProcessing for 'report.jpetstore.example3'.

Processed <1> primary records.

Export Manager Results:

File Archiver:

file: c:\FlowProcessorPackage\output\example3-output.html_2007-06-22_21-47-12.html

Submittal 'report.jpetstore.example3' finished.
As mentioned previously, because the initialization file indicated the output type was “submit”, then the Flow Processor merely logs the results from the export managers because it is the export managers that are expected to do the real work in this case.
2.4.3.3.1 Template Merge Processing

For Example 3, the Template File, specified by the CDX_DOC_TEMPLATE_ FILENAME column of our Flow’s model definition, provides a simple HTML shell. The content of the c:\FlowProcessorPackage\properties\ex3-template.txt template file is listed below.

<html>

 <head>

 <meta http-equiv="content-type" content="text/html; charset=UTF-8">

 <title><%Insert Payload Operation Here%></title>

 </head>

 <body>

 <%Insert Data Set Here%>
 </body>

</html>

Below is an explanation of how the data is replaced in the template for the highlighted areas above.

· <% Insert Payload Operation Here %> - is the text associated with the FP_DOC_ TEMPLATE_TAG_PAYLOAD_OPERATION option in the FP_OPTION table. It is replaced with the value of the CDX_FLOW_OPERATION column of the Flow’s model definition.
· <% Insert Data Set Here %> - is the text associated with the FP_DOC_ TEMPLATE_TAG_DATA_SET option in the FP_OPTION table. It is replaced with the entire output from the Flow Processor’s data extraction and optional transformation phases.

2.4.3.3.2 Transformation Processing

The stylesheet defined for this example is c:\FlowProcessorPackage\properties\ example3.xsl and is assigned to this Flow model by the CDX_DATA_SET_ XSLT_FILENAME column. The text for the example3.xsl file is listed below.
<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" omit-xml-declaration="yes" indent="yes"/>

<!-- The root nodes. -->

<xsl:template match="/">

<h1>Categories</h1>

Total Number of Categories: <i><xsl:value-of select="count(//category)"/></i>

<table border="1">

<tr><th>Id</th><th>Name</th><th>Description</th></tr>

<xsl:for-each select="//category">

 <xsl:variable name="catAnchor" select="catid"/>

 <tr>

 <td><xsl:value-of select="catid"/></td>

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="descn"/></td>

 </tr>

</xsl:for-each>

</table>

<h1>Products</h1>

Total number of Products: <i><xsl:value-of select="count(//product)"/></i>

<table border="1">

<tr><th>Id</th><th>Name</th><th>Description</th><th>Category</th></tr>

<xsl:for-each select="//product">

 <xsl:variable name="prodAnchor" select="productid"/>

 <xsl:variable name="prodCatAnchor" select="category"/>

 <tr>

 <td><xsl:value-of select="productid"/></td>

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="descn"/></td>

 <td><xsl:value-of select="category"/></td>

 </tr>

</xsl:for-each>

</table>

<h1>Items</h1>

Total number of Items: <i><xsl:value-of select="count(//item)"/></i>

<table border="1">

<tr><th>Id</th><th>Attribute</th><th>Available Qty</th><th>Price</th><th>Product</th></tr>

<xsl:for-each select="//item">

 <xsl:variable name="itemProdAnchor" select="productid"/>

 <tr>

 <td><xsl:value-of select="itemid"/></td>

 <td><xsl:value-of select="attr1"/></td>

 <td><xsl:value-of select="qty"/></td>

 <td>$<xsl:value-of select="listprice"/></td>

 <td><xsl:value-of select="productid"/></td>

 </tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

The above stylesheet is written knowing the behavior of the Flow Processor, in particular, the format of the raw XML after the data extraction phase. You can review how this format is derived in section 2.4.1.3 above.

The important difference with this XSLT is that it is embedding HTML tags within the stylesheet rather than building a final XML document. It could very easily produce other output formats such as pure text files.

2.4.3.3.3 File Archiving Process

The final html document is passed to each Export Manager assigned to the Flow is the result of the Transformation and Template Merge phase.

There was only one Export Manager assigned to our Flow, namely the File Archiver export manager. The File Archiver produces an output file that is based on

· the VALUE_STRING column associated with the “DIRECTORY” parameter defined for the Export Manager

· the OUTPUT_BASE_FILENAME column from the Flow Model definition,

· the date and timestamp from the Flow Processor execution, and

· The CDX_DOC_TYPE_CODE column from the Flow Model definition.

This created the following output file name, c:\FlowProcessorPackage\output\ example3-output_2007-06-22_22-13-40.html.

� For brevity, not all subdirectories and files of the c:\Flow ProcessorPackage\doc\ directory is listed. By clicking on the index.html file, all JavaDoc files can be accessed.

	[image: image28.png]

[image: image29.png]Primary Query
select contact_id “id” Detailed Query 1
from Contacts select contact_id,

Where dept="Sales’ address, city, state, zip
from Address

Where contact_id=#id#

_/

Detailed Query 2
select contact_id,

id home, cell
100 :> from Phone_Numbers
200 Where contact_id=#id#

300 L.

Detailed Query 3
select contact_id,region|
from Sales_Regions
Where contact_id=#id#

region_info: egion_info;

Flow Processor User’s Guide

	
	[image: image30.wmf]

	[image: image31.png]Time

Flow Processor Engine

Use the configuration file to locate the Data
Access Definition files

Use the Data Access Definition files to locate and
access the Flow Settings

Use the Flow Settings to determine the XSL Stylesheets,
FlowPreProcess Managers and FlowExportManagers

Execute each FlowPreProcess Manager class
in the order specified by the Flow Settings

Use the Data Access Definitions and Flow
Settings to retrieve the data of the Flow

For each data set retrieved, build the generic XML data format, and
apply the XSL Stylesheets to convert the data into the final format

Execute each FlowExportManager class in the
order specified by the Flow Settings

S
ot

Flow Processor User’s Guide

	
	

_1146317428.doc
[image: image1.wmf]

