Environmental Information

INTEROPERABLE WATERSHEDS

NETWORK (Continuous Monitoring Pilot)

Dwane Young, U.S. EPA Office of Water

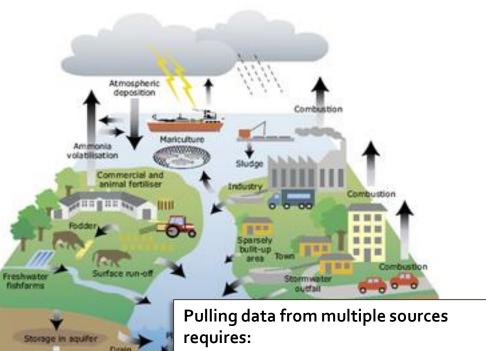
Mike Kusmiesz, NJ Department of Environmental Protection

2017 Exchange Network National Meeting

Innovation and Partnership

May 16-18, 2017 Sheraton Philadelphia Society Hill Hotel Philadelphia, Pennsylvania

http://www.exchangenetwork.net/en2017


ABSTRACT

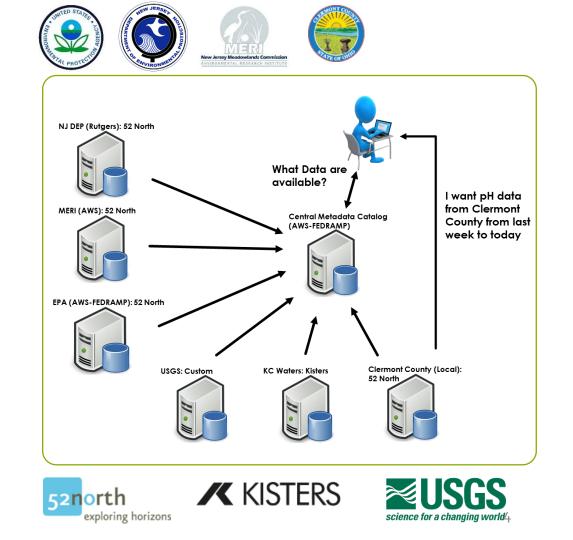
The Interoperable Watersheds Network was a demonstration project that focused on evaluating approaches to improve sensor data sharing. It was based on knowledge gained from a recommendations report that EPA developed in 2014. The project focused on addressing three major areas:

- 1. Data Standards
- 2. Metadata
- 3. System Architecture

Why Do We Need a Sensor Data Sharing Network?

- Water sensors are emerging as a key technology that can be used to improve monitoring efforts
- Multiple entities (EPA, other federal agencies, states, tribes, local groups) are investing in these new technologies
- This has already resulted in a proliferation of data that are not interoperable

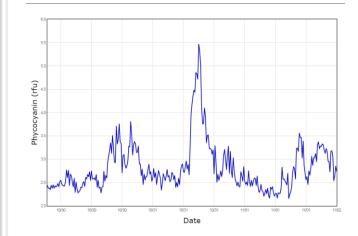
Groundwater


- 1. Knowing where the data are stored
- 2. Learning how to access the data
- 3. Downloading the data
- 4. Reformatting the data
- 5. Harmonizing Terms

This results in a significant time lost

IWN Used a New Approach for Sharing Data

How do you solve the problem of multiple data providers with large amounts of data that have the potential to change every 3-15 minutes?


- Used a central catalog/index that references every data owner's assets with the corresponding metadata for each sensor
- Allowed for quick searching and discovery of available data
- This approach is similar to how Google allows you to search the internet
- Actual data comes from the partners systems in real-time

The Data Standards Problem

- We needed a common way to represent and communicate the data
- Standards for sensor data already exist, there was no need to create new standards
 - OGC Sensor Observation Service
 - OGC Water ML 2 and Sensor ML
- The Open Geospatial Consortium is an open-source, international standards setting body

5

Why Did **NJDEP Participate?**

- Influence: A state's perspective Our sensor experience
- Compatibility: Part of future solution
 - Home Grown (RU System)
 - Off the shelf (Kisters)
 - Mature (USGS)
- Seamless Transition: All done, set to go
 - Minimal funding if moved to Production
 Reduced staff commitment
- Future Work Flow: Impact on staff
 - Internal management of data
 - Feasibility
- Useful Tool: Product that makes sense

What Role Did NJDEP Play?

- Case Study: Water Quality Assessment Group
 - Benefits the state
- **Discussions**: Ongoing communication
 - Conference Calls
 - Homework
 - Respond back to EPA/Contractors
- Metadata Balance: Too much vs. Too Little
- Database Schema: What stays vs. What goes?
- **Testing**: Provide feedback
 - Flow
 - Errors

Underlying Catalog Services IWN Defined


- **GetOrganizations**: Returns who is providing data with their endpoints
- AvailableParameters: What parameters can be queried
- GetSensors: Gets the sensor information and provides different methods for querying sensors (i.e. by county, by HUC, by buffer, by a bounding box, upstream, and downstream)
- **GetSensorParameters**: Gets parameters for a sensor, including the period of record
- **GetOrganizationParameters**: Gets the parameters for an entire Organization

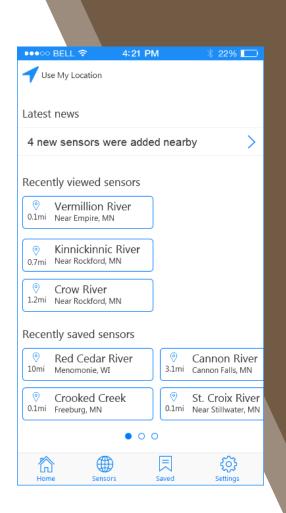
OGC Defined Services (SOS 2)

Each endpoint supports Sensor Observation Service in XML format (WaterML2)

- **GetObservation**: Gets the most recent data or retrieves a collection of data
- **GetDataAvailability**: Getting all the metadata from the endpoint
- **DescribeSensor**: Describes the sensor

-	n	n	7	A	ł
a	11	U	1	4	4

×


×

×

×

×

22

IWN's Open Architecture Allows Other Possibilities

- IWN is built using an open architecture, meaning that all the functionality you see in the demonstration tool is also available as a corresponding Web Service or Application Program Interface (API)
- Enables other apps to be developed (like mobile apps)
- Also allows other third-party applications (like Excel) to be able to directly interact with the data without having to go to a website and 'download' the data

Next Steps

- Demonstration project ended in December
 - A Lessons Learned Report has been completed
 - Demonstration tool will continue to be available
 - A mobile app is being developed that leverages the services/API developed as part of this project
- Demonstration proved successful
 - Services worked better than expected
 - Setting up a data appliance was simpler than anticipated
- Ready to move to a production-level system, pending resources
- Advanced Monitoring Team is exploring if the services and standards would work for Air data as well
- Lessons Learned Document is available at: <u>https://www.epa.gov/sites/production/files/2017-</u> <u>o1/documents/iwn_lessonslearned_final_201612.pdf</u>

QUESTIONS?

Dwane Young Young dwane @epa.gov 202-566-1214

Mike Kusmiesz Mike Kusmiesz@dep.nj.gov 609-292-5602

